首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
trans-3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing βPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (βAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (βN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and βAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations.  相似文献   

2.
Shearzyme (GH10 endo-1,4-β-d-xylanase) and two different α-l-arabinofuranosidases (AXH-m and AXH-d3) were used stepwise to manufacture arabinoxylo-oligosaccharides (AXOS) with α-l-Araf (1→2)-monosubstituted β-d-Xylp residues or α-l-Araf (1→2)- and (1→3) doubly substituted β-d-Xylp residues from wheat arabinoxylan (AX) in a rather straightforward way. Four major AXOS (d-I, d-II, m-I and m-II) were formed in two separate hydrolyses. The AXOS were purified and the structures were confirmed using TLC, HPAEC-PAD, MALDI-TOF-MS and 1D and 2D NMR spectroscopy. The samples were identified as d-I: α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xylp, d-II: α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-d-Xylp, m-I: α-l-Araf-(1→2)-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xylp and m-II: α-l-Araf-(1→2)-β-d-Xylp-(1→4)-d-Xylp. To our knowledge, this is the first report on structural 1H and 13C NMR analysis of xylobiose-derived AXOS d-II and m-II. The latter compound has not been reported previously. The doubly substituted AXOS were produced for the first time in good yields, as d-I and d-II corresponded to 11.8 and 5.6 wt% of AX, respectively. Singly α-l-Araf (1→2)-substituted AXOS could also be prepared in similar yields by treating the doubly substituted AXOS further with AXH-d3.  相似文献   

3.
Three-dimensional (3D) models for the 79.2 kDa activated Cry1Ib9 and 77.4 kDa activated Cry3A δ-endotoxins from Bacillus thuringiensis (Bt) native isolates that are specifically toxic to Coleopteran insect pests were constructed by utilizing homology modeling online tool. Evidences presented here, based on the identification of structural equivalent residues of Cry1Ib9 and Cry3A toxin through homology modelling indicate that, they share a common Bt toxin tridimensional structure. The main differences observed in Cry1I9 domain I at positions α2b (S56-I60), α4 (F78-l93) and additionally β0 (Q10-L12), α8a (T280-V282) were observed, in domain II at positions α9b (P333-L339), β6(T390-Q393), β7(V398-W404), β8 (V418-W425), β9 (E453-N454), β10 (S470-I479) where as in domain III the changes were observed at positions β19 (R601-F607), β20 (609-L613), β21 (S618-F627) and α11a (K655-F664), α13, α14 components present at downstream sites, where as in Cry3A main differences observed in domain I is at the position of α4 (P105-I152), α5 (Q163-A185), β1A(E190-L192), α6 (F193-Y217), Domain II is not consevered and main variations were observed at β2 (E292-L295), β3(V299-L308), β4(I340-F347), β5(D356-P368), β6(I375-T377), β7(V389-F394), β8(K398-N405), β9(Y416-Y427), β10 (T436-Y439), β12(G476-H495), β12A (M503-I504) where as in domain III main variations observed at positions of β18 (P583-I593), β19(F604-S610), β20(P611-L615), β21(N619-G626). Cry1Ib9 and Cry3A contain the most variable regions in the loops of domain II, which determine the specificity of these toxins. These are the first models of Coleopteran-active protein from native isolates of Bt and its importance can be perceived since members of this group of toxins are potentially important candidates for coleoptera insect pest control programs.  相似文献   

4.
Arabinogalactan-proteins (AGPs) are a family of plant proteoglycans having large carbohydrate moieties attached to core-proteins. The carbohydrate moieties of AGPs commonly have β-(1→3)(1→6)-galactan as the backbone, to which other auxiliary sugars such as l-Ara and GlcA are attached. For the present study, an α-l-arabinofuranosidase belonging to glycoside hydrolase family (GHF) 54, NcAraf1, and an endo-β-(1→6)-galactanase of GHF 5, Nc6GAL, were identified in Neurospora crassa. Recombinant NcAraf1 (rNcAraf1) expressed in Pichia pastoris hydrolyzed radish AGPs as well as arabinan and arabinoxylan, showing relatively broad substrate specificity toward polysaccharides containing α-l-arabinofuranosyl residues. Recombinant Nc6GAL (rNc6GAL) expressed in P. pastoris specifically acted on β-(1→6)-galactosyl residues. Whereas AGP from radish roots was hardly hydrolyzed by rNc6GAL alone, β-(1→6)-galactan side chains were reduced to one or two galactan residues by a combination of rNcAraf1 and rNc6GAL. These results suggest that the carbohydrate moieties of AGPs are degraded by the concerted action of NcAraf1 and Nc6GAL secreted from N. crassa.  相似文献   

5.
A proteinaceous toxin with hemolytic and lethal activities, named neoverrucotoxin (neoVTX), was purified from the venom fluid of stonefish Synanceia verrucosa and its primary structure was elucidated by a cDNA cloning technique. NeoVTX is a dimeric 166 kDa protein composed of α-subunit (702 amino acid residues) and β-subunit (699 amino acid residues) and lacks carbohydrate moieties. Its hemolytic activity is inhibited by anionic lipids, especially potently by cardiolipin. These properties are comparable to those of stonustoxin (SNTX) previously purified from S. horrida. Alignment of the amino acid sequences also reveals that the neoVTX α- and β-subunits share as high as 87 and 95% sequence identity with the SNTX α- and β-subunits, respectively. The distinct differences between neoVTX and SNTX are recognized only in the numbers of Cys residues (18 for neoVTX and 15 for SNTX) and free thiol groups (10 for neoVTX and 5 for SNTX). In contrast, neoVTX considerably differs from verrucotoxin (VTX), a tetrameric 322 kDa glycoprotein, previously purified from S. verrucosa. In addition, the sequence identity of the neoVTX β-subunit with the reported VTX β-subunit is 90%, being lower than that with the SNTX β-subunit.  相似文献   

6.
We investigated the acceptor substrate specificities of marine bacterial α-(2→3)-sialyltransferase cloned from Photobacterium sp. JT-ISH-224 and α-(2→6)-sialyltransferase cloned from Photobacterium damselae JT0160 using several saccharides as acceptor substrates. After purifying the enzymatic reaction products, we confirmed their structure by NMR spectroscopy. The α-(2→3)-sialyltransferase transferred N-acetylneuraminic acid (Neu5Ac) from cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) to the β-anomeric hydroxyl groups of mannose (Man) and α-Manp-(1→6)-Manp, and α-(2→6)-sialyltransferase transferred N-acetylneuraminic acid to the 6-OH groups of the non-reducing end galactose residues in β-Galp-(1→3)-GlcpNAc and β-Galp-(1→6)-GlcpNAc.  相似文献   

7.
In this paper, polysaccharides were extracted from the seeds of Plantago asiatica L. with hot water and separated into three fractions PLP-1 (18.9%), PLP-2 (52.6%) and PLP-3 (28.5%) by Sephacryl™ S-400 HR column chomatography. The main fraction PLP-2's structure was elucidated using oxalic acid hydrolysis, partial acid hydrolysis, methylation, GC, GC-MS, 1D and 2D NMR. PLP-2 was composed of Rha, Ara, Xyl, Man, Glc and Gal, in a molar ratio of 0.05:1.00:1.90:0.05:0.06:0.10. Its uronic acid was GlcA. PLP-2 was highly branched heteroxylan which consisted of a β-1,4-linked Xylp backbone with side chains attached to O-2 or O-3. The side chains consisted of β-T-linked Xylp, α-T-linked Araf, α-T-linked GlcAp, β-Xylp-(1 → 3)-α-Araf and α-Araf-(1 → 3)-β-Xylp, etc. Based on these results, the structure of PLP-2 was proposed.  相似文献   

8.
Four new indolopyridoquinazoline alkaloids were isolated in small amount from the bark of Euxylophora paraänsis Hub. Chemical reactions and spectroscopic evidence indicated that euxylophorine-C has structure (Ia), which was confirmed by synthesis. The structures of the other alkaloids, euxylophorine-D (IIa), euxylophoricine-D (IIIa) and euxylophoricine-E (IVa), were determined through correlation with (Ia).  相似文献   

9.
Glycogen debranching enzyme (GDE) in mammals and yeast exhibits α-1,4-transferase and α-1,6-glucosidase activities within a single polypeptide chain and facilitates the breakdown of glycogen by a bi-functional mechanism. Each enzymatic activity of GDE is suggested to be associated with distinct domains; α-1,4-glycosyltransferase activity with the N-terminal domain and α-1,6-glucosidase activity with the C-terminal domain. Here, we present the biochemical features of the GDE from Saccharomyces cerevisiae using the substrate glucose(n)-β-cyclodextrin (Gn-β-CD). The bacterially expressed and purified GDE N-terminal domain (aa 1–644) showed α-1,4-transferase activity on maltotetraose (G4) and G4-β-CD, yielding various lengths of (G)n. Surprisingly, the N-terminal domain also exhibited α-1,6-glucosidase activity against G1-β-CD and G4-β-CD, producing G1 and β-CD. Mutational analysis showed that residues D535 and E564 in the N-terminal domain are essential for the transferase activity but not for the glucosidase activity. These results indicate that the N-terminal domain (1–644) alone has both α-1,4-transferase and the α-1,6-glucosidase activities and suggest that the bi-functional activity in the N-domain may occur via one active site, as observed in some archaeal debranching enzymes.  相似文献   

10.
Wang LJ  Li CX  Ni Y  Zhang J  Liu X  Xu JH 《Bioresource technology》2011,102(14):7023-7028
An NADH-dependent reductase (ScCR) from Streptomyces coelicolor was discovered by genome mining for carbonyl reductases. ScCR was overexpressed in Escherichia coli BL21, purified to homogeneity and its catalytic properties were studied. This enzyme catalyzed the asymmetric reduction of a broad range of prochiral ketones including aryl ketones, α- and β-ketoesters, with high activity and excellent enantioselectivity (>99% ee) towards β-ketoesters. Among them, ethyl 4-chloro-3-oxobutanoate (COBE) was efficiently converted to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), an important pharmaceutical intermediate, in water/toluene biphasic system. As much as 600 g/L (3.6 M) of COBE was asymmetrically reduced within 22 h using 2-propanol as a co-substrate for NADH regeneration, resulting in a yield of 93%, an enantioselectivity of >99% ee, and a total turnover number (TTN) of 12,100. These results indicate the potential of ScCR for the industrial production of valuable chiral alcohols.  相似文献   

11.
Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two α subunits and four β subunits with the structure of a double β-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (α1, α2, β1, and β2) from T. KS-1. All of them (α1-β1, α2-β1, α1-β2, and α2-β2) exist as α2β4 heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the β1 subunit interacted with the chaperonins more strongly than those with the β2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.  相似文献   

12.
1. To identify the intermediates involved in the degradation of cholic acid, the further degradation of (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IVa) by Arthrobacter simplex was attempted. The organism could not utilize this acid but some hypothetical intermediate metabolities of compound (IVa) were prepared for later use as reference compounds. 2. The nor homologue (IIIa) and the dinor homologue (IIIb) of compound (IVa) were prepared by exposure of 3-oxo-24-nor-5beta-cholan-23-oic acid (I) and (20S)-3beta-hydroxy-5-pregnene-20-carboxylic acid (II) to A. simplex respectively. These compounds correspond to the respective metabolites produced by the shortening of the valeric acid side chain of compound (IVa) in a manner analogous to the conventional fatty acid alpha- and beta-oxidation mechanisms. Their structures were confirmed by partial synthesis. 3. The following authentic samples of reduction products of the oxodicarboxylic acids (IIIa), (IIIb) and (IVa) were also synthesized as hypothetical metabolities: (4R)-4-[3aalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]valeric acid (Vb) and its nor homologue (VIIa) and dinor homologue (IXa);(4R)-4-[3Aaalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]-pentan-1-ol (Vc); and their respective 5beta epimers (Ve), (VIIc), (IXc) and (Vf). 4. In connexion with the non-utilization of compound (IVa) by A. simplex, the possibility that not all the metabolites formed from cholic acid by a certain micro-organism can be utilized by the same organism is considered.  相似文献   

13.
Monoterpenoids and sesquiterpenoid hydrocarbons of Pinus edulis wood oleoresin were analyzed by chromatographic and spectroscopic methods. Monoterpenoid hydrocarbons (20·3%) were composed mainly of α-pinene, with camphene, β-pinene, 3-carene, sabinene, myrcene, limonene, β-phellandrene, trans-ocimene and terpinolene in secondary to trace amounts. Oxygenated terpenoids (0.28%) contained bornyl acetate and verbenone as major constituents, and linalool, camphor, terpinene-4-ol, citronellyl acetate, borneol, neral, α-terpineol, citronellol, nerol, and geraniol in smaller amounts. Oleoresin contained 1·1% of acetogenins, composed mainly of ethyl caprylate. Sesquiterpenoid hydrocarbons were high (5·7%) in oleoresin) and were composed of germacrene D as a major constituent (36·6%), of γ-amorphene, α-copaene, and longifolene as secondary constituents (5–20%), and β-farnesene, α- and γ-murolenes, β1-, γ-, δ-, and ε-cadinenes, α-amorphene, δ-guaiene, sibirene, α-cubebene, β-copaene, β-ylangene, sativene, cyclosativene, β-bourbonene, α- and γ-humulenes, caryophyllene, α-longipinene and longicyclene in smaller amounts. Composition of P. edulis and of P. monophylla turpentines was found to be similar, with percentage of ethyl caprylate being the best distinguishing criterion.  相似文献   

14.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

15.
The Streptomyces coelicolor A3(2) gene SCI11.14c was overexpressed and purified as a His-tagged protein from heterologous host, Streptomyces lividans. The purification procedure resulted in 34.1-fold increase in specific activity with an overall yield of 21.4%. Biochemical and physical properties of the purified enzyme were investigated and it was shown that it possesses (aryl)esterase and a true lipase activity. The enzyme was able to hydrolyze p-nitrophenyl-, α- and β-naphthyl esters and poly(oxyethylene) sorbitan monoesters (Tween 20–80). It showed pronounced activity towards p-nitrophenyl and α- and β-naphthyl esters of C12–C16. Higher activity was observed with α-naphthyl esters. The enzyme hydrolyzed triolein (specific activity: 91.9 U/mg) and a wide range of oils with a preference for those having higher content of linoleic or oleic acid (C18:2; C18:1, cis). The active-site serine specific inhibitor 3,4-dichloroisocoumarin (DCI) strongly inhibited the enzyme, while tetrahydrofurane and 1,4-dioxane significantly increased (2- and 4- fold, respectively) hydrolytic activity of lipase towards p-nitrophenyl caprylate. The enzyme exhibited relatively high temperature optimum (55 °C) and thermal stability. CD analysis revealed predominance of α-helical structure (54% α-helix, 21% β-sheet) and a Tm value at 66 °C.  相似文献   

16.
The carbohydrase activities present in freeze-dried extracts of the alimentary tract of Locusta have been surveyed using natural and synthetic substrates and qualitative detection methods. A range of polysaccharidases was demonstrated including amylase, (weak) cellulase, dextranase, hyaluronidase, laminarinase, and xylanase, but there was no evidence of alginase, chitinase, 1,3-α-glucanase, inulinase, lysozyme, or pectinase.Almost all oligosaccharides and glycosides tested were hydrolysed, demonstrating the presence of α- and β-glucosidase (including isomaltase and trehalase), α- and β-galactosidase, α- and β-mannosidase, α- and β-xylosidase, β-glucuronidase, β-N-acetylhexosaminidase, and β-fucosidase, but no β-fructosidase was detected. α- and β-l-Fucosidase and α-l-arabinosidase activities were present but there was no evidence of α-l-rhamnosidase or β-l-arabinosidase. These observations are related to the diet and nutrition of Locusta and compared with the carbohydrase complements reported for other acridids.  相似文献   

17.
The inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with a series of 25 branched aliphatic and aromatic carboxylates has been investigated. Human isoforms hCA I and II were also included in the study for comparison. Aliphatic carboxylates were generally millimolar hCA I and II inhibitors and low micromolar/submicromolar β-CA inhibitors. Aromatic carboxylates were micromolar inhibitors of the four enzymes but some of them showed low nanomolar activity against the fungal pathogenic enzymes. 4-Hydroxy- and 4-methoxy-benzoate inhibited Can2 with KIs of 9.5-9.9 nM. The methyl esters, hydroxamates, hydrazides and carboxamides of some of these derivatives were also effective inhibitors of the α- and β-CAs investigated here.  相似文献   

18.
The aryltetralin lignan deoxypodophyllotoxin is much more widespread in the plant kingdom than podophyllotoxin. The latter serves as a starting compound for the production of cytostatic drugs like etoposide. A better insight into the occurrence of deoxypodophyllotoxin combined with detailed knowledge of its biosynthestic pathway(s) may help to develop alternative sources for podophyllotoxin. Using HPLC combined with electrospray tandem mass spectrometry and NMR spectroscopy techniques, we found nine lignans and five related structures in roots of Anthriscus sylvestris (L.) Hoffm. (Apiaceae), a common wild plant in temperate regions of the world. Podophyllotoxone, deoxypodophyllotoxin, yatein, anhydropodorhizol, 1-(3′-methoxy-4′,5′-methylenedioxyphenyl)1-ξ-methoxy-2-propene, and 2-butenoic acid, 2-methyl-4-[[(2Z)-2-methyl-1-oxo-2-buten-1-yl]oxy]-, (2E)-3-(7-methoxy-1,3-benzodioxol-5-yl)-2-propen-1-yl ester, (2Z)- were the major compounds. α-Peltatin, podophyllotoxin, β-peltatin, isopicropodophyllone, β-peltatin-a-methylether, (Z)-2-angeloyloxymethyl-2-butenoic acid, anthriscinol methylether, and anthriscrusin were present in lower concentrations. α-Peltatin, β-peltatin, isopicropodophyllone, podophyllotoxone, and β-peltatin-a-methylether have not been previously reported to be present in A. sylvestris. Based on our findings we propose a hypothetical biosynthetic pathway of aryltetralin lignans in A. sylvestris.  相似文献   

19.
Anomeric pairs of α-and β-dodecyl, α-and β-(1-pentylhexyl), and α-and β-cyclododecyl glycosides of N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) were synthesized. The starting β-D-glucosaminides were obtained by the oxazoline method, and the corresponding α-isomers, by the mercuric iodide-catalyzed glycosylation of alcohols with α-glucosaminyl chloride peracetate in nitromethane at ~90°C. No reliable differences between the stimulation of mouse resistance to the infection with Staphylococcus aureus (doses of 2, 20, and 200 μg/mouse) and Escherichia coli (doses of 0.05, 1, and 20 μg/mouse) with the MDP α-and β-glycosides were found.  相似文献   

20.
N2-(2-Carboxyethyl)arginine synthase (CEAS), an unusual thiamin diphosphate (ThDP)-dependent enzyme, catalyses the committed step in the biosynthesis of the β-lactamase inhibitor clavulanic acid in Streptomyces clavuligerus. Crystal structures of tetrameric CEAS-ThDP in complex with the substrate analogues 5-guanidinovaleric acid (GVA) and tartrate, and a structure reflecting a possible enol(ate)-ThDP reaction intermediate are described. The structures suggest overlapping binding sites for the substrates d-glyceraldehyde-3-phosphate (d-G3P) and l-arginine, and are consistent with the proposed CEAS mechanism in which d-G3P binds at the active site and reacts to form an α,β-unsaturated intermediate, which subsequently undergoes (1,4)-Michael addition with the α-amino group of l-arginine. Additional solution studies are presented which probe the amino acid substrate tolerance of CEAS, providing further insight into the l-arginine binding site. These findings may facilitate the engineering of CEAS towards the synthesis of alternative β-amino acid products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号