首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aminopeptidases (1), dipeptidyl aminopeptidases (2), pyrrolidonyl peptidases (3), and carboxypeptidases (4,5) can be detected in polyacrylamide gels with appropriate-β-naphthylamide or carbonaphthoxyamino acid substrates while dipeptidases, tripeptidases (6), carboxypeptidases (7), and aminopeptidases can be detected by the coupled l-amino acid oxidase-peroxidase method of Lewis and Harris (6).In contrast, fewer methods are available for the detection of proteinases in gels. Trypsin-like (8,9) and chymotrypsin-like (5,10) proteinases can be detected with chromogenic β-naphthylamide and β-naphthol ester substrates, but proteinases such as thermolysin (11) and other bacterial neutral metal chelator-sensitive proteinases (12) cannot. For these latter proteinases, whose specificities are directed towards the amino acid residue containing the amino group of the bond to be hydrolyzed, and for proteinases, whose specificities remain to be determined, other methods of detection have to be employed.Uriel and Avrameas (13) detected proteinases in agarose gels by overlaying these gels with a second agarose gel mixture containing the substrate and a suitable pH indicator. However, the method suffers from interference by gel buffers and the instability of the pattern developed. Another procedure is to bring the gel in contact with a gelatinous layer of film material (14,15). This has been done successfully with tissue sections (16), paper electrophoretograms (17) and agarose gel separations (18).The most suitable approach is to diffuse an appropriate protein substrate into the gel after electrophoresis and detect the proteinase activity directly. Several variations of this method have been published (19–22), each with its own advantages and disadvantages. In this report a simple, sensitive method using cytochrome c as substrate, and requiring no staining, is described. This report describes its application to the detection of thermolysin and trypsin in anionic and cationic gel systems, respectively. The method has also been routinely used to locate bacterial and insect proteinases after electrophoresis.  相似文献   

2.
Mikola L 《Plant physiology》1986,81(3):823-829
Extracts of resting and germinating (3 days at 20°C) wheat (Triticum aestivum L. cv Ruso) grains rapidly hydrolyzed various benzyloxycarbonyldipeptides (Z-dipeptides) at pH 4 to 6. Similar activities were present in extracts of mature flag leaves. Fractionation by chromatography on CM-cellulose and on Sephadex G-200 showed that the activities in germinating grains were due to five acid carboxypeptidases with different and complementary substrate specificities. The wheat enzymes appeared to correspond to the five acid carboxypeptidases present in germinating barley (L Mikola 1983 Biochim Biophys Acta 747: 241-252). The enzymes were designated wheat carboxypeptidases I to V and their best or most characteristic substrates and approximate molecular weights were: I, Z-Phe-Ala, 120,000; II, Z-Ala-Arg, 120,000; III, Z-Ala-Phe, 40,000; IV, Z-Pro-Ala, 165,000; and V, Z-Pro-Ala, 150,000. Resting grains contained carboxypeptidase II as a series of three isoenzymes and low activities of carboxypeptidases IV and V. During germination the activity of carboxypeptidase II decreased, those of carboxypeptidases IV and V increased, and high activities of carboxypeptidases I and III appeared. The flag leaves contained high activity of carboxypeptidase I and lower activities of carboxypeptidases II, IV, and V, whereas carboxypeptidase III was absent.  相似文献   

3.
Wrobel R  Jones BL 《Plant physiology》1992,100(3):1508-1516
Barley endoproteolytic enzymes are important to germination because they hydrolyze endosperm storage proteins to provide precursors for new protein synthesis. We recently developed an electrophoretic method utilizing gel-incorporated protein substrates to study the endoproteinases of 4-d-germinated barley (Hordeum vulgare L. cv Morex) grain. This work extends those findings to determine the temporal pattern of the appearance of the endoproteinases during germination, the sensitivities of the proteinases to class-specific proteinase inhibitors, and where, in germinating caryopses, the proteinases reside. Six endoproteinase activity bands (representing a minimum of seven enzymes) were present in 5-d-germinated barley grain extracts subjected to electrophoresis in nondenaturing gels at pH 8.8. The activities of two of the enzyme bands (“neutral” proteinases) increased as the pH was increased from 3.8 to 6.5. The activities of the remaining four (“acidic”) bands diminished abruptly as the pH increased above 4.7. Two proteinase bands hydrolyzed gelatin but not edestin, four of the proteinases hydrolyzed both gelatin and edestin at nearly the same rates, and one enzyme degraded only edestin. One neutral endoproteinase was sensitive to diisopropyl fluorophosphate inhibition, and the other was not inhibited by any of inhibitors tested. Four of acidic enzymes were cysteine proteinases [inhibited by trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and N-ethylmaleimide]; the other was an aspartic acid endoproteinase (sensitive to pepstatin). Only the aspartic proteinase was detected in either ungerminated or steeped barley grain. During the germination (malting) process, the aspartic endoproteinase activity decreased until the second day of germination and then increased until germination day 5. The first endoproteinase(s) induced during germination was a neutral enzyme that showed activity on the 1st day of the germination phase after steeping. Most of the endoproteinases became active on the 2nd or 3rd germination day, but one cysteine proteinase was not detected until the 5th day. Acid cysteine proteinases were present in the aleurone, scutellum, and endosperm tissues but not in shoots and roots. The aleurone layer and endosperm contained almost exclusively band B1 neutral proteinases, whereas the scutellum, shoots, and roots contained both B1 and B2 bands. This work shows that germinating barley contains a complex set of proteinases whose expression is temporally and spatially controlled. But, at the same time, it also shows that this electrophoretic method for separating and studying individual enzymes of this complex will allow us to more readily characterize and purify them.  相似文献   

4.
Leena Mikola  Juhani Mikola 《Planta》1980,149(2):149-154
In germinating grains of barley, Hordeum vulgare L. cv. Himalaya, free proline accumulated in the starchy endosperm during the period of rapid mobilization of reserve proteins. When starchy endosperms were separated from germinating grains and homogenized in a dilute buffer of pH 5 (the pH of the starchy endosperm), the liberation of proline continued in these suspensions. The process was completely inhibited by diisopropylfluorophosphate, indicating that it was totally dependent on serine carboxy-peptidases. The carboxypeptidases present in the starchy endosperms of germinating grains were fractionated by chromatography on DEAE-cellulose. Four peaks were obtained, all with different activity spectra on the seven carbobenzoxydipeptides (Z-dipeptides) tested. Two of the peaks corresponded to previously known barley carboxypeptidases; these as well as a third peak hydrolyzed substrates of the types Z-X-Y and Z-X-Pro (X and Y denote any amino acid residue except proline). The fourth peak corresponded to a proline carboxypeptidase specific for substrates of the Z-Pro-X type. Apparently, in the hydrolysis of longer proline-containing peptides there must be sequential cooperation between the two carboxypeptidase types. The carboxypeptidases in extracts of starchy endosperms also liberated proline from the peptides Ala-Ala-Ala-Pro and Ala-Ala-Pro while Ala-Pro and Pro-Ala were not attacked. The dipeptides, however, were rapidly hydrolyzed around pH 7 by extracts prepared from the scutella of germinating grains. It is concluded that one part of the proline residues of the reserve proteins is liberated in situ in the starchy endosperm through the combined action of acid proteinases and carboxypeptidases, while another part is taken up in the form of small peptides by the scutellum, where proline is liberated by amino- and/or dipeptidases in some neutral compartment.Abbreviations DFP diisopropylfluorophosphate - DTT dithiothreitol - TNBS 2,4,6-trinitrobenzenesulphonic acid - Z N-carbobenzoxy - TLC thin layer chromatography A preliminary account of these results was given at the Meeting of the Federation of European Plant Physiological Societies in Edinburgh in July 1978. Abstract No. 181  相似文献   

5.
The growth of Fusarium culmorum fungus on a medium containing thermostable proteins from potato tubers was accompanied by the production of proteinases, exhibiting activity over a broad pH range (from 6.0–10.0). When studied by SDS-PAGE in the presence of β-mercaptoethanol, extracellular proteinases were represented by at least five species with a molecular weight of 30–60 kDa. Inhibitor analysis and studies of enzyme activities with synthetic substrates demonstrated that the culture liquid of Fusarium culmorum contained serine proteinases of various classes. The amount of subtilisin-like proteinases was the highest. A near-complete inhibition of the enzymes was caused by proteinaceous proteinase inhibitors from potato tubers. These data suggest that proteinases of the phytopathogen Fusarium culmorum serve as a metabolic target for natural inhibitors of potato proteinases.  相似文献   

6.
Nna1 (CCP1) defines a subfamily of M14 metallocarboxypeptidases (CCP1–6) and is mutated in pcd (Purkinje cell degeneration) mice. Nna1, CCP4, and CCP6 are involved in the post-translational process of polyglutamylation, where they catalyze the removal of polyglutamate side chains. However, it is unknown whether these three cytosolic carboxypeptidases share identical enzymatic properties and redundant biological functions. We show that like Nna1, purified recombinant CCP4 and CCP6 deglutamylate tubulin, but unlike Nna1, neither rescues Purkinje cell degeneration in pcd mice, indicating that they do not have identical functions. Using biotin-based synthetic substrates, we established that the three enzymes are distinguishable based upon individual preferences for glutamate chain length, the amino acid immediately adjacent to the glutamate chain, and whether their activity is enhanced by nearby acidic amino acids. Nna1 and CCP4 remove the C-terminal glutamate from substrates with two or more glutamates, whereas CCP6 requires four or more glutamates. CCP4 behaves as a promiscuous glutamase, with little preference for chain length or neighboring amino acid composition. Besides glutamate chain length dependence, Nna1 and CCP6 exhibit higher kcat/Km when substrates contain nearby acidic amino acids. All cytosolic carboxypeptidases exhibit a monoglutamase activity when aspartic acid precedes a single glutamate, which, together with their other individual preferences for flanking amino acids, greatly increases the potential substrates for these enzymes and the biological processes in which they act. Additionally, Nna1 metabolized substrates mimicking the C terminus of tubulin in a way suggesting that the tyrosinated form of tubulin will accumulate in pcd mice.  相似文献   

7.
Phytochelatins (PCs) are cysteine-rich peptides that chelate heavy metal ions, thereby mediating heavy metal tolerance in plants, fission yeast, and Caenorhabditis elegans. They are synthesized from glutathione by PC synthase, a specific dipeptidyltransferase. While Saccharomyces cerevisiae synthesizes PCs upon exposure to heavy metal ions, the S. cerevisiae genome does not encode a PC synthase homologue. How PCs are synthesized in yeast is unclear. This study shows that the vacuolar serine carboxypeptidases CPY and CPC are responsible for PC synthesis in yeast. The finding of a PCS-like activity of these enzymes in vivo discloses another route for PC biosynthesis in eukaryotes.  相似文献   

8.
Nematophagous fungi Pochonia chlamydosporia and P. rubescens colonize endophytically barley roots. During nematode infection, serine proteases are secreted. We have investigated whether such proteases are also produced during root colonization. Polyclonal antibodies against serine protease P32 of P. rubescens cross-reacted with a related protease (VCP1) of P. chlamydosporia, but not with barley proteases. These antibodies also detected an unknown ca. 65-kDa protein, labeled hyphae and appressoria of P. chlamydosporia and strongly reduced proteolytic activity of extracts from fungus-colonized roots. Mass spectrometry (MS) of 32-kDa protein bands detected peptides homologous to VCP1 only in Pochonia-colonized roots. Peptides homologous to barley serine carboxypeptidases were found in 65 kDa bands of all roots. RT-PCR detected expression of VCP1 and a new P. chlamydosporia serine carboxypeptidase (SCP1) genes only in fungus-colonized roots. SCP1 shared limited sequence homology with VCP1 and P32. Expression in roots of proteases from nematophagous fungi could be greatly relevant for nematode biocontrol.  相似文献   

9.
The utilization of dietary proteins in crustaceans is facilitated by a set of peptide hydrolases which are often dominated by “trypsin-like” serine proteinases. As expected, the North Sea shrimps Crangon crangon and Crangon allmani showed in their midgut glands high proteolytic activities. However, the majority of animals lacked trypsin and chymotrypsin. Conversely, a minority of about 10% of the animals had elevated trypsin activities. The appearance of trypsin was neither related to the mode of feeding nor to the nutritive state of the animals. When present, trypsin was expressed in both species as a single isoform of apparently 20 kDa. The lack of serine proteinases was also confirmed by inhibitor assays. AEBSF, a serine proteinase inhibitor, slightly reduced total proteinase activity by less than 10%. In contrast E 64, a cysteine proteinase inhibitor, caused a reduction of more than 70% of total proteinase activity, indicating that a substantial share of proteolytic activity is caused by cysteine proteinases. Cathepsin L-like proteinases were identified as major cysteine proteinases.A comparison with the eucarid crustaceans Pandalus montagui, Pagurus bernhardus, Cancer pagurus and Euphausia superba showed a similar high level of total proteinase activity in all species. Trypsin, however, varied significantly between species showing lowest activities in Caridea and the highest activity in E. superba. E 64 suppressed total proteinase activity by more than 70% in Crangon species but not in C. pagurus and E. superba. In contrast, the serine proteinase inhibitor AEBSF had only little effect in Caridea but was most effective in P. bernhardus, C. pagurus and E. superba. The results may indicate different traits of food utilization strategies in some eucarid crustaceans. Caridea may express predominantly cysteine proteinase, while in Anomura, Brachyura and Euphausiacea, serine proteinases may prevail.  相似文献   

10.
Changes in root- and leaf-soluble proteins were investigated in tomato after invasion by the root-knot nematode Meloidogyne javanica, or in barley and wheat after invasion by the cereal cyst nematode Heterodera avenae. Infection of susceptible tomato plants by M. javanica did not cause any change in the soluble-protein composition of leaves or roots compared with uninoculated plants at an early infection stage. No pathogenesis-related proteins (chitinase, glucanase, or P-14) were induced in the leaf apoplast. Changes in leaf proteins were not observed after invasion of wheat cultivars by H. avenae, whereas, in barley, a few changes in intercellular leaf proteins were recorded in resistant cultivars. These changes, however, were not the same among different H. avenae-resistant cultivars. Protein changes were found at an early stage of infection in barley and wheat roots infected with H. avenae, but no difference was found between resistant and susceptible cultivars.  相似文献   

11.
The fungal plant pathogen Rhizoctonia solani Kuhn. grown in a medium containing thermostable potato tuber proteins produced proteinases active at moderately alkaline pH values. Electrophoretic analysis in polyacrylamide gel with SDS and copolymerized gelatin showed that the extracellular proteinase complex contained four components that differed in molecular weight. Studies on the action of the exoenzymes on various synthetic substrates indicated that the culture liquid of R. solani contained mainly trypsin-like proteinases. The exoproteinase activity was virtually completely suppressed by trypsin inhibitor proteins isolated from potato tubers and seeds of various legume species. The results suggest that the extracellular proteinases produced by R. solani play a significant role in attacking plant tissue, and natural inhibitors contribute to the protection of Solanaceae and Leguminosae from this fungal pathogen.  相似文献   

12.
Carboxypeptidase activity was studied in subcellular fractions from a transplantable rat insulinoma and found to be localised principally in the insulin secretory granule. The activity, which was specific for peptide substrates with C-terminal basic amino acids, appeared to be a single enzyme with Mr 54 000. This enzyme differed with respect to size and pH optimum from other basic amino acid-specific carboxypeptidases, such as carboxypeptidases B and N, and may be a secretory granule-specific enzyme involved in propolypeptide processing.  相似文献   

13.
Leishmaniasis is a tropical disease caused by Leishmania, eukaryotic parasites transmitted to humans by sand flies. Towards the development of new chemotherapeutic targets for this disease, biochemical and in vivo expression studies were performed on one of two M32 carboxypeptidases present within the Leishmania major (LmaCP1) genome. Enzymatic studies reveal that like previously studied M32 carboxypeptidases, LmaCP1 cleaves substrates with a variety of C-terminal amino acids—the primary exception being those having C-terminal acidic residues. Cleavage assays with a series of FRET-based peptides suggest that LmaCP1 exhibits a substrate length restriction, preferring peptides shorter than 9-12 amino acids. The in vivo expression of LmaCP1 was analyzed for each major stage of the L. major life cycle. These studies reveal that LmaCP1 expression occurs only in procyclic promastigotes—the stage of life where the organism resides in the abdominal midgut of the insect. The implications of these results are discussed.  相似文献   

14.
The hypothesis that plants supplied with organic fertilizers are better defended against insect herbivores than those supplied with synthetic fertilizers was tested over two field seasons. Organic and synthetic fertilizer treatments at two nitrogen concentrations were supplied to Brassica plants, and their effects on the abundance of herbivore species and plant chemistry were assessed. The organic treatments also differed in fertilizer type: a green manure was used for the low-nitrogen treatment, while the high-nitrogen treatment contained green and animal manures. Two aphid species showed different responses to fertilizers: the Brassica specialist Brevicoryne brassicae was more abundant on organically fertilized plants, while the generalist Myzus persicae had higher populations on synthetically fertilized plants. The diamondback moth Plutella xylostella (a crucifer specialist) was more abundant on synthetically fertilized plants and preferred to oviposit on these plants. Glucosinolate concentrations were up to three times greater on plants grown in the organic treatments, while foliar nitrogen was maximized on plants under the higher of the synthetic fertilizer treatments. The varying response of herbivore species to these strong differences in plant chemistry demonstrates that hypotheses on defence in organically grown crops have over-simplified the response of phytophagous insects.  相似文献   

15.
Digestive proteinases and carbohydrases of Ectomyelois ceratoniae (Zeller) larvae were investigated using appropriate substrates and inhibitors. Midgut pH in larvae was determined to be slightly alkaline. Midgut extracts showed optimum activity for proteolysis of hemoglobin at pH 9–12. Midgut proteinases also hydrolyzed the synthetic substrates of trypsin, chymotrypsin, and elastase at pH 8–11. Maximum digestive α-amylase activity was also observed at pH 8–11. However, optimum activity for α- and β-glucosidase occurred at pH 5–8. Alpha- and β-galactosidases optimum activities occurred at pH 5 and pH 6, respectively. Inhibitors of serine proteases were effective on midgut serine proteases (trypsin and chymotrypsin proteases). Zymogram analyses revealed at least five bands of total proteolytic activity in the larval midgut. Protease-specific zymogram analyses revealed at least four, two, and one isozymes for trypsin-, chymotrypsin-, and elastase-like activities respectively. Two α-amylase isozymes were found in the midgut of fifth instar larvae and in the whole bodies of 1st through 5th instar larvae. Zymogram studies also revealed the presence of one and two bands of activity for β- and α-glucosidase, respectively. Recycling of α-amylase and proteases in the larval midgut was not complete. At least one isozyme of trypsin, chymotrypsin, elastase, and α-amylase were not recycled and were observed in the larval hindgut.  相似文献   

16.
The risk that insect-resistant transgenic plants may pose for solitary bees was assessed by determining longevity of adult Osmia bicornis (O. rufa) chronically exposed to transgenic oilseed rape expressing oryzacystatin-1 (OC-1) or to the purified insecticidal proteins recombinant rOC-1, Kunitz soybean trypsin inhibitor (SBTI), Galanthus nivalis agglutinin (GNA), or Bacillus thuringiensis toxin Cry1Ab dissolved in sugar solution (at 0.01 and 0.1%, w:v, Cry1Ab only at 0.01%). Compared to control bees, longevity was significantly reduced by SBTI and GNA at both concentrations and by rOC-1 at 0.1%, but not by Cry1Ab or rOC-1 at 0.01%. Longevity on the OC-1 oilseed rape was not significantly different from the control plants. The effects of SBTI and rOC-1 on longevity were investigated through characterization of the digestive proteinases of O. bicornis and analysis of the response in proteinase profiles to ingestion of these proteinase inhibitors. A relatively complex profile of at least four types of soluble proteolytic enzymes was identified. Serine proteinases were found to be predominant, with metallo and especially cysteine proteinases making a smaller albeit significant contribution. The compensatory response to in vivo enzyme inhibition was similar for SBTI and rOC-1 although less pronounced for rOC-1. It consisted of a non-specific overproduction of native proteinases, both sensitive and insensitive, and the induction of a novel aspartic proteinase.  相似文献   

17.

Background

The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs).

Methods

Real-time NMR using a range of artificial chromogenic, synthetic pseudo-natural and natural substrates was employed to determine the hydrolytic abilities and specificity of different Abfs.

Results

The way in which synthetic di-arabinofuranosylated substrates are hydrolyzed by Abfs mirrors the behavior of enzymes on natural arabinoxylo-oligosaccharide (AXOS). Family GH43 Abfs that are strictly specific for mono-substituted d-xylosyl moieties (AXH-m) do not hydrolyze synthetic di-arabinofuranosylated substrates, while those specific for di-substituted moieties (AXH-d) remove a single l-arabinofuranosyl (l-Araf) group. GH51 Abfs, which are supposedly AXH-m enzymes, can release l-Araf from disubstituted d-xylosyl moieties, when these are non-reducing terminal groups.

Conclusions and general significance

The present study reveals that although the activity of Abfs on artificial substrates can be quite different from that displayed on natural substrates, enzyme specificity is well conserved. This implies that carefully chosen artificial substrates bearing di-arabinofuranosyl d-xylosyl moieties are convenient tools to probe selectivity in new Abfs. Moreover, this study has further clarified the relative promiscuity of GH51 Abfs, which can apparently hydrolyze terminal disubstitutions in AXOS, albeit less efficiently than mono-substituted motifs.  相似文献   

18.
Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.  相似文献   

19.
Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48?h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition.  相似文献   

20.
In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a 169QACRG173 sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号