首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Etiolated barley seedlings lose the ability to produce chlorophyll and soluble protein on exposure to light with increasing age. Similarly, the production of δ-aminolaevulinic acid-dehydratase and succinyl-CoA synthetase is decreased in older etiolated leaves exposed to light. The rate of protochlorophyllide652 regeneration decreased well before the rates of exogenous δ-aminolaevulinic acid conversion to protochlorophyllide632 was affected by ageing. Application of kinetin retarded these ageing symptoms in the etiolated leaves.  相似文献   

2.
The polyamine oxidase of barley shoots is associated with a particle which sediments in low centrifugal fields. The enzyme was removed from these particles by washing in 0·5 M NaCl and then purified about 24-fold. The purified enzyme oxidized spermine stoicheiometrically to 1,3-diaminopropane and 1-(3-aminopropyl)pyrroline (pH optimum 4·0). Spermidine was oxidized to 1,3-diaminopropane and 1-pyrroline (pH optimum 6·6). At their respective pH optima, spermine is oxidized about 30 times faster than spermidine. Hydrogen peroxide was formed in the course of the polyamine oxidation. The enzyme was not sensitive to several copper chelating reagents but 2-hydroxyethylhydrazine caused 50% inhibition at 5 × 10−4 M. The enzyme was also present in particles in the roots of barley seedlings and in extracts of the leaves of oats, maize, rye and wheat.  相似文献   

3.
The stereospecificity of chloramphenicol isomers on the inhibition of several plant systems was investigated. l-Threo, d-erythro, l-erythro and the antibiotic d-threo-chloramphenicol were effective inhibitors of auxin-induced elongation, 14C-leucine uptake and 14C-leucine incorporation into the protein fraction of coleoptiles from Avena sativa and Triticum vulgare. The isomers also inhibited Avena coleoptile uptake of 14C-α-aminoisobutyric acid and the de novo synthesis of α-amylase by aleurone layers from Hordeum vulgare seeds. All four compounds inhibited these processes to about the same extent and over a similar high concentration range (5 × 10−4 to 5 × 10−3 M). Bioassay of extracts from Avena coleoptiles treated with the non-antibiotic isomers revealed no tissue conversion into d-threo-chloramphenicol.  相似文献   

4.
Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.  相似文献   

5.
The cotton boll weevil Anthonomus grandis (Boheman) is one of the major pests of cotton (Gossypium hirsutum L.) in tropical and sub-tropical areas of the New World. This feeds on cotton floral fruits and buds causing severe crop losses. Digestion in the boll weevil is facilitated by high levels of serine proteinases, which are responsible for the almost all proteolytic activity. Aiming to reduce the proteolytic activity, the inhibitory effects of black-eyed pea trypsin/chymotrypsin inhibitor (BTCI), towards trypsin and chymotrypsin from bovine pancreas and from midguts of A. grandis larvae and adult insects were analyzed. BTCI, purified from Vigna unguiculata (L.) seeds, was highly active against different trypsin-like proteinases studied and moderately active against the digestive chymotrypsin of adult insects. Nevertheless, no inhibitory activity was observed against chymotrypsin from A. grandis larval guts. To test the BTCI efficiency in vivo, neonate larvae were reared on artificial diet containing BTCI at 10, 50 and 100 microM. A reduction of larval weight of up to approximately 54% at the highest BTCI concentration was observed. At this concentration, the insect mortality was 65%. This work constitutes the first observation of a Bowman-Birk type inhibitor active in vitro and in vivo toward the cotton boll weevil A. grandis. The results of bioassays strongly suggest that BTCI may have potential as a transgene protein for use in engineered crop plants modified for heightened resistance to the cotton boll weevil.  相似文献   

6.
A consensus linkage map of barley   总被引:5,自引:0,他引:5  
A consensus linkage map of the barley genome was constructed. The map is based on six doubled haploid and one F2 population. The mapping data for three of the doubled haploid populations was obtained via the GrainGenes database. To allow merger of the maps, only RFLP markers that produce a single scorable band were included. Although this reduced the available markers by about half, the resultant map contains a total of 587 markers including 87 of known function. As expected, gene order was highly conserved between maps and all but two discrepancies were found in closely linked markers and are likely to result from the small population sizes used for some maps. The consensus map allows the rapid localisation of markers between published maps and should facilitate the selection of markers for high-density mapping in defined regions.  相似文献   

7.

Background and Aims

Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species.

Methods HvAACT1

was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil.

Key Results and Conclusions

Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants.  相似文献   

8.
We have amplified and cloned DNA sequences derived from a gene encoding a SNF1 (sucrose-non-fermenting 1)-related protein kinase which differs from that previously reported from barley. Northern blot and polymerase chain reaction (PCR) analysis of RNA populations, using specific probes and oligonucleotide primers, indicated that the two SNF1-related genes are differentially regulated. One is expressed in all tissues, whereas the other is expressed at high levels in the seed endosperm and aleurone, but at levels undetectable by northern blot analysis in other tissues. Comparisons with other plant SNF1-related protein kinase genes suggest that the form which is expressed at greatly enhanced levels in the seed is less similar to the other plant homologues which have been reported and may be unique to cereals.  相似文献   

9.
Summary A method is described for transfection (genetic transformation) of barley caryopsis electrophoretically with DNA. -Glucuronidase activity was detected after the electrophoretic transfection with plasmid pBI221 DNA carrying the cauliflower mosaic virus promotor and bacterial -glucuronidase coding sequence. Electrophoretic transfection is evidently effective with pieces of callus and seeds of many plants.  相似文献   

10.
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6) or "phytic acid") typically represents approximately 75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations are described. In seeds homozygous for M 635 and M 955 reductions in Ins P(6), approximately 75 and >90% respectively, are accompanied by reductions in other Ins phosphates and molar-equivalent increases in Pi. This phenotype suggests a block in supply of substrate Ins. In seeds homozygous for barley low phytic acid 1-1 (lpa1-1), a 45% decrease in Ins P(6) is mostly matched by an increase in Pi but also accompanied by small increases in Ins(1,2,3,4,6)P(5). In seeds homozygous for barley lpa2-1, reductions in seed Ins P(6) are accompanied by increases in both Pi and in several Ins phosphates, a phenotype that suggests a lesion in Ins phosphate metabolism, rather than Ins supply. The increased Ins phosphates in barley lpa2-1 seed are: Ins(1,2,3,4,6)P(5); Ins(1,2,4,6)P(4) and/or its enantiomer Ins(2,3,4,6)P(4); Ins(1,2,3,4)P(4) and/or its enantiomer Ins(1,2,3,6)P(4); Ins(1,2,6)P(3) and/or its enantiomer Ins(2,3,4)P(3); Ins(1,5,6)P(3) and/or its enantiomer Ins(3,4,5)P(3) (the methods used here cannot distinguish between enantiomers). This primarily "5-OH" series of Ins phosphates differs from the "1-/3-OH" series observed at elevated levels in seed of the maize lpa2 genotype, but previous chromosomal mapping data indicated that the maize and barley lpa2 loci might be orthologs of a single ancestral gene. Therefore one hypothesis that might explain the differing lpa2 phenotypes is that their common ancestral gene encodes a multi-functional, Ins phosphate kinase with both "1-/-3-" and "5-kinase" activities. A putative pyrophosphate-containing Ins phosphate, possibly an Ins P(7), was also observed in the mature seed of all barley genotypes except lpa2-1. Barley M 955 indicates that at least for this species, the ability to accumulate Ins P(6) can be nearly abolished while retaining at least short-term ( approximately 1.0 years) viability.  相似文献   

11.
Several gene linkage maps have been produced for cultivated barley. We have produced a new linkage map for barley, based on a cross between Hordeum vulgare subsp. spontaneum and Hordeum vulgare subsp. vulgare (Hvs x Hvv), having a higher level of polymorphism than most of the previous barley crosses used for RFLP mapping. Of 133 markers mapped in the Hvs x Hvv F2 population, 69 were previously mapped on other barley maps, and 26 were mapped in rice, maize, or wheat. Two known gene clones were mapped as well as two morphological markers. The distributions of previously mapped markers were compared with their respective barley maps to align the different maps into one consensus map. The distributions of common markers among barley, wheat, rice and maize were also compared, indicating colinear linkage groups among these species.To be considered dual first authorsPublished with the approval of the Director of the Colorado State University/Agricultural Experiment Station.  相似文献   

12.
Stable genetic transformation represents the gold standard approach to the detailed elucidation of plant gene functions. This is particularly relevant in barley, an important experimental model widely employed in applied molecular, genetic and cell biological research, and biotechnology. Presented are details of the establishment of a protocol for Agrobacterium-mediated gene transfer to immature embryos, which enables the highly efficient generation of transgenic barley. Advancements were achieved through comparative experiments on the influence of various explant treatments and co-cultivation conditions. The analysis of representative numbers of transgenic lines revealed that the obtained T-DNA copy numbers are typically low, the generative transmission of the recombinant DNA is in accordance with the Mendelian rules and the vast majority of the primary transgenics produce progeny that expresses the respective transgene product. Moreover, the newly established protocol turned out to be useful to transform not only the highly amenable cultivar (cv.) ‘Golden Promise’ but also other spring and winter barley genotypes, albeit with substantially lower efficiency. As a major result of this study, a very useful tool is now available for future functional gene analyses as well as genetic engineering approaches. With the aim to modify the expression of barley genes putatively involved in plant–fungus interactions, numerous transgenic plants have been generated using diverse expression cassettes. These plants represent an example of how transformation technology may contribute to further our understanding of important biological processes.  相似文献   

13.
In order to elucidate the possibility of in vivo oxidative modification of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39) as a triggering mechanism for its preferential degradation early in senescence, some antioxidant compounds, protective enzymes, H2O2 and protein carbonylation levels were studied in the leaves during dark-induced senescence of barley (Hordeum vulgare L. cv. “Obzor”) seedlings. Analyses were performed in extracts as well as in purified chloroplasts. Some weakening of the antioxidative protection was detected during the treatment: diminution in the ascorbate and non-protein SH (mainly glutathione) pools, lower activities of superoxide dismutase, guaiacol and ascorbate peroxidases. However, no accumulation of H2O2 was found, lower level of protein carbonylation in darkness was measured and the percentage of reduced ascorbate was maintained high. Data concerning antioxidant compounds in chloroplasts revealed some impairment of the ascorbate and glutathione pools under induced senescence - the level of non-protein thiols declined during early senescence whereas the ascorbate pool was not significantly changed. The percentage of reduced ascorbate remained high in the chloroplasts and the activities of superoxide dismutase and of ascorbate peroxidase were conserved. Taken together the results are not in accordance with the possibility of in vivo oxidative modification of Rubisco in the case of dark-induced senescence. Our data bring some support to the view about redox regulation of Rubisco turnover in senescence through the pool of the low-molecular chloroplastic thiols.  相似文献   

14.
B. Seeling  A. Jungk 《Plant and Soil》1996,178(2):179-184
Organic phosphorus is often a major part of total phosphorus in soil solution. The role of this fraction as a P source for plants and the mechanism involved in its transfer from soil to plant is still unclear. We studied the utilization of organic phospharus in 0.01 M calcium chloride extracts by barley and its hydrolysis by isolated acid and alkaline phosphatases. Calcium chloride extracts were used as a nutrient solution in 24 hrs assays. Concentration of organic and inorganic P in equilibrium calcium chloride extracts was 7.8 and 1.8 µmol P L-1, respectively, which was similar to the soil solution P concentration. When soil microbial biomass was destroyed by autoclaving, organic P concentration increased to 64.8 µmol P L-1 whereas the inorganic P was hardly changed. Inoculation of the autoclaved soil with non-sterile soil and incubation for 5 days decreased the organic P concentration to 27.9 µmol P L-1 but did not change inorganic P. In this study barley plants utilized organic P from all extracts. The greatest reduction of organic P concentration occurred in fresh extracts of the autoclaved soil. Inorganic P was depleted to traces in all extracts. Organic P was hydrolyzed by isolated acid and alkaline phosphatases. We conclude that organic P in soil solution is a heterogeneous pool of organic P compounds originating from microbial biomass. Its initial availability to plants was nigh but its susceptibility to phosphatase hydrolysis was quickly reduced but not completely lost.  相似文献   

15.
The population structure of the fungal pathogen Pyrenophora teres, collected mainly from different regions of the Czech and Slovak Republics, was examined using a microsatellite analyses (SSR). Among 305 P. teres f. teres (PTT) and 82 P. teres f. maculata (PTM) isolates that were collected, the overall gene diversity was similar (? = 0.12 and ? = 0.13, respectively). A high level of genetic differentiation (FST = 0.46; P < 0.001) indicated the existence of population structure. Nine clusters that were found using a Bayesian approach represent the genetic structure of the studied P. teres populations. Two clusters consisted of PTM populations; PTT populations formed another seven clusters. An exact test of population differentiation confirmed the results that were generated by Structure. There was no difference between naturally infected populations over time, and genetic distance did not correlate with geographical distance. The facts that all individuals had unique multilocus genotypes and that the hypothesis of random mating could not be rejected in several populations or subpopulations serve as evidence that a mixed mating system plays a role in the P. teres life cycle. Despite the fact that the genetic differentiation value between PTT and PTM (FST = 0.30; P < 0.001) is lower than it is between the populations within each form (FST = 0.40 (PTT); FST = 0.35 (PTM); P < 0.001) and that individuals with mixed PTT and PTM genomes were found, the two forms of P. teres form genetically separate populations. Therefore, it can be assumed that these populations have most likely undergone speciation.  相似文献   

16.
17.
Summary A highly regenerable target tissue and a high-frequency DNA delivery system are required for the routine production of transgenic barley. This project separately optimized tissue culture and particle bombardment parameters. Immature zygotic embryos (0.7 to 1.2 mm) were excised and culture on B5L solid medium. Klages and H930-36 cultivars regenerated significantly more green plants than Sabarlis and Bruce. The regeneration pathway shifted from organogenesis to somatic embryogenesis when maltose was used as the medium carbohydrate source instead of sucrose. More somatic embryos were induced on 5 mg/liter 2,4-dichlorophenoxyacetic acid than 2 mg/liter. Gene delivery was optimized using anthocyanin regulatory genes as a transient marker. A 3-mm rupture disc-to-macrocarrier gap distance, a 1-day prebombardment embryo culture period, and a maltose carbohydrate source were each significantly better than other treatments. Double bombardments per plate, a 6-mm macrocarrier fly distance, and 650-psi rupture discs each had the highest number of transiently expressing cells in individual experiments, although the results were not statistically significant compared to the other treatments. Using the optimized parameters, over 200 cells routinely expressed anthocyanin in a bombarded immature embryo. In tissue culture experiments, 350 to 400 green plants regenerated per 100 immature embryos. The improvement of green plant regeneration and gene delivery forms a strong basis to develop a practical barley transformation system.  相似文献   

18.
Fertile transgenic barley by particle bombardment of immature embryos   总被引:5,自引:0,他引:5  
Transgenic, fertile barley (Hordeum vulgare L.) from the Finnish elite cultivar Kymppi was obtained by particle bombardment of immature embryos. Immature embryos were bombarded to the embryonic axis side and grown to plants without selection. Neomycin phosphotransferase II (NPTII) activity was screened in small plantlets. One out of a total of 227 plants expressed the transferred nptII gene. This plant has until now produced 98 fertile spikes (T0), and four of the 90 T0 spikes analyzed to date contained the nptII gene. These shoots were further analyzed and they expressed the transferred gene. From green grains, embryos were isolated and grown to plantlets (T1). The four transgenic shoots of Toivo (the T0 plant) produced 25 plantlets as T1 progeny. Altogether fifteen of these T1 plants carried the transferred nptII gene as detected with the PCR technique, fourteen of which expressed the nptII gene. The integration and inheritance of the transferred nptII gene was confirmed by Southern blot hybridization. Although present as several copies, the transferred gene was inherited as a single Mendelian locus into the T2 progeny.  相似文献   

19.
Beside a cardinal role in coordination of many developmental processes in the plant, the phytohormone auxin has been recognized as a regulator of plant defense. The molecular mechanisms involved are still largely unknown. Using a sensitive chemiluminescence assay, which measures the oxidation of luminol in the presence of H2O2 by horseradish peroxidase (HRP), we report here on the ability of exogenously added indole-3-acetic acid (IAA) to enhance the suppressive effect of the root endophyte Piriformospora indica on the chitin-elicited oxidative burst in barley roots. Thus, the potential of P. indica to produce free IAA during the early colonization phase in barley might provide the symbiont with a means to interfere with the microbe-associated molecular patterns (MAMP)-triggered immunity.  相似文献   

20.
The uptake, distribution and metabolism of selenite were examined in germinating homozygous barley (Hordeum vulgare L.) grain with thioredoxin h overexpressed in starchy endosperm. Results were related to the null segregant in which the transgene had segregated out during crossing. Compared with the null segregant, the homozygote showed enhanced germination and root and shoot growth in the presence of 1 and 2 mM sodium selenite. The rate of incorporation of selenite by the homozygote was approximately twice that of the null segregant. Based on X-ray absorption spectroscopy, the major products in both cases were selenomethionine-like species and the red, monoclinic form of elemental selenium, a derivative not previously reported in green plants. Selenite and selenate made up the balance. The distribution of the products formed differed as to the tissue — root, shoot, aleurone, endosperm — but the ratios were similar in the homozygote and null segregant. The results provide evidence that, in addition to the accelerated germination observed previously in water, barley grain overexpressing thioredoxin h are resistant to the inhibitory effects of selenite. These properties raise the possibility that plants overexpressing thioredoxin h could find application in the remediation of polluted environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号