首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The storage triacylglycerols of nasturtium (Tropaeolum majus) seeds are composed principally of cis-11-eicosenoate and cis-13-docosenoate. To investigate the biosynthesis of these C20 and C22 fatty acids, developing seed tissue was incubated with various 14C-labeled precursors. Incubation with [1-14C]acetate produced primarily cis-11-[1-14C]eicosenoate and cis-13-[1,3-14C]docosenoate in the triacylglycerol fraction, the odd-carbon [U-14C]oleate also formed from [14C] acetate was in the polar lipid fraction. Kinetic data showed that this oleate was not channeled into cis-11-eicosenoate nor cis-13-docosenoate over a 24-hour period. Under suitable conditions, nasturtium seed could also produce [14C]stearate, [14C]eicosenoate, and [14C]docosenoate from [1-14C]acetate. The results are discussed in terms of the number of pathways producing fatty acids. From pool size and other considerations, the results can be rationalized only in terms of different de novo systems for oleate biosythesis, one supplying oleate for incorporation into phospholipids and the other supplying oleate for chain elongation and subsequent esterification into triacylglycerols. Because of the probable heterogeneous nature of the seed tissue, it is not known if these two systems are operating in different cell types, in the same cell type at different stages of development, or in the same cell type concurrently.  相似文献   

2.
Methods are described for the quantitative extraction and separation of the pyrimidine glucosides, vicine and convicine. The contents of these two substances in germinating seeds and young seedlings of Vicia faba remain constant for the first 2 weeks. Net synthesis and accumulation of vicine and convicine occurs in developing seeds. That the synthesis occurs within the pod and the pyrimidine glucosides are not translocated into them, was shown by injection of 14C-labelled precursors into the pods. [1-14C]- and [2-14C]-acetate were weakly incorporated but much greater incorporation was observed with [U-14C]-aspartic acid and [6-14C]-orotic acid. The results indicate that the orotic acid pathway is involved in the formation of the pyrimidine ring of both vicine and convicine.  相似文献   

3.
The metabolism of d-gluconate-[1-14C] and -[6-14C] by segments from etiolated hypocotyls of Phaseolus mungo has been studied. The release of 14CO2 from gluconate-[1-14C] was greater than that from gluconate-[6-14C] in all parts of hypocotyls examined. Incorporation of the radioactivity from gluconate-[6-14C] into RNA, lignin and aromatic amino acid fractions was greater in the upper (younger) part of the hypocotyls. Incorporation into sugars was greater in the lower (more mature) parts.  相似文献   

4.
Suspensions of isolated pine needle chloroplasts were shown to incorporate galactose from UDP galactose-[14C] into galactolipids. The incorporation of the label among galactolipids was always considerably higher in the monogalactosyl diglycerides than in the digalactosyl diglycerides. The galactosyl incorporation into both galactolipid fractions was optimal at pH 8.0 and was inhibited by sulphydryl reagents (p-chloromercuribenzoate, N-ethyl maleimide and CdCl2). The chloroplast preparations were also able to biosynthesize various phospholipids and galactolipids from palmitoyl-[1-14C]-CoA; the major portion of the label appeared in phosphatidyl choline. The incorporation of palmitic-[1-14C] acid into various lipids was very poor compared to that of palmitoyl-[1-14C]-CoA. However, addition of ATP and CoA markedly stimulated lipid biosynthesis from palmitic-[1-14C] acid, suggesting the presence of activating enzymes. These chloroplast suspensions did not show any de novo fatty acid synthesis.  相似文献   

5.
Chopped tissue from developing soybean cotyledons incorporated [1-14C]acetate into palmitate, stearate, oleate, and linoleate, but with germinating cotyledons much less [1-14C]acetate was incorporated and the principal labeled products were palmitate, stearate, and oleate. When supernatant fractions from developing cotyledons were incubated with [1-14C]acetate or [2-14C]malonate the principal labeled products were palmitate and stearate. Supernatant fractions from germinating seed incorporated [2-14C]malonate into palmitate and also into short chain fatty acids including decanoate, laurate, and myristate. Supernatants from developing cotyledons required acyl carrier protein (ACP), ATP, CoA, and reduced pyridine nucleotides for maximal rates of incorporation of either [1-14C]acetate or [2-14C]malonate into palmitate and stearate. The de novo fatty acid synthetase which converts acetyl- and malonyl-ACP's to palmityl ACP was active in supernatant fractions from both young and old developing cotyledons. The elongation system, converting palmityl ACP to stearyl ACP, was more active in supernatants from younger than from older developing cotyledons. In experiments with chopped tissue the elongation system appeared equally active throughout the development process. These results are consistent with the view that the de novo and elongation systems are separate entities and that the elongation system in older cotyledons is less stable to the methods used to prepare supernatant fractions.  相似文献   

6.
Sodium [1-14C]acetate, sodium [1-14C]propionate, sodium [2-14C]propionate, sodium [3-14C]propionate and sodium [methyl-14C]methylmalonate were readily incorporated into the cuticular hydrocarbons of nymphal stages of the cockroach Periplaneta fuliginosa both in vivo and in vitro, whereas no incorporation of [methyl-14C]methionine was observed. The alkanes of the nymphal stages of this insect are 25+% n-alkanes, 14% 3-methylalkanes, and 59+% internally branched monomethylalkanes, principally 13-methylpentacosane. Sodium [1-14C]acetate was incorporated into each class of alkane at about its percentage composition. In contrast, labeled sodium propionate and sodium methylmalonate were preferentially incorporated into the branched fractions. Radio-gas-liquid chromatography showed that sodium [1-14C]propionate was incorporated almost exclusively into 3-methyltricosane and 13-methylpentacosane, whereas sodium [1-14C]acetate was incorporated into each glc peak at about its percentage composition. These data suggest that propionate, incorporated during chain elongation, serves as the branching methyl group donor for both the 3-methyl and the internally branched monomethylalkanes in insects. The location of hydrocarbon synthesis in P. fuliginosa was studied using an in vitro tissue slice system. Excised cuticle slices, with adhering fat body tissue removed, gave good incorporation of labeled substrates into the hydrocarbon fraction. No hydrocarbon synthesis was observed in fat body preparations.  相似文献   

7.
Feeding experiments have demonstrated the specific incorporation of radioactivity from dl-phenylalanine-[1-14C], l-phenylalanine-[U-14C], sodium acetate-[2-14C] and l-methionine-[methyl-14C] into the 3-benzylchroman-4-one eucomin in Eucomis bicolor. The labelling patterns indicate that eucomin is biosynthesized by the addition of a carbon atom derived from methionine onto a C15 chalcone-type skeleton. Radioactivity from 2′,4′,4-trihydroxy-6′-methoxychalcone-[methyl-14C] and 2′,4′-dihydroxy-4,6′-dimethoxychalcone-[6′-methyl-14C] was incorporated into eucomin, the latter compound being the better precursor, demonstrating the feasibility that 2′-methoxychalcones are biosynthetic precursors of the “homoisoflavonoids”. Possible biosynthetic relationships in this class of compounds are discussed.  相似文献   

8.
The aim of this work was to investigate the extent of glycolysis during gluconeogenesis in the germination of marrow (Cucurbita pepo L. var. medullosa Alef.). The activities of phosphofructokinase (E.C. 2.7.1.11) in extracts of cotyledons, of seeds, and seedlings grown in the dark for 2, 5, and 8 days were 3·5, 4·8, 9·4, and 11·8 nmol substrate consumed per cotyledon per min, respectively. The comparable figures for pyruvate kinase (E.C. 2.7.1.41) were 16·3, 72·3, 974, and 1485. The patterns of 14CO2 production from [1-14C], [2-14C], [3,4-14C], and [6-14C]glucose indicated that at all the above stages of germination glycolysis was appreciable and predominated over the pentose phosphate pathway. These patterns, and the distribution of label from [1-14C], and [3-14C]pyruvate supplied to 5-day-old cotyledons, indicated that the pyruvate formed in glycolysis was converted to acetyl units that were used primarily in biosyntheses. It is concluded that glycolysis occurred at all the stages of germination examined and was particularly active during gluconeogenesis. It is suggested that the significance of this glycolysis is the provision of intermediates for biosyntheses, a need that may not be met by corresponding gluconeogenic intermediates as these may be retained within organelles.  相似文献   

9.
1. The nucleic acid metabolism in the pyridoxine-deficient rat has been investigated through studies on the incorporation of radioactivity from various isotopically labelled compounds into liver and spleen DNA and RNA. 2. In pyridoxine deficiency, the incorporation of radioactivity from sodium [14C]formate was apparently increased. The magnitude of this effect on incorporation into liver RNA and DNA and spleen RNA was approximately the same. The incorporation into spleen DNA was enhanced to a much greater degree. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [14C]formate. 3. In pyridoxine deficiency, the incorporation of radioactivity from dl-[3-14C]serine, [8-14C]adenine, [Me-3H]thymidine and [2-14C]deoxyuridine was decreased. The incorporation of radioactivity from l-[Me-14C]methionine was not affected. No noteworthy differences in the effect of pyridoxine deficiency on the incorporation of radioactivity from dl-[3-14C]serine into DNA and RNA were observed, whereas the effect of the deficiency on the incorporation of radioactivity from [8-14C]adenine into spleen DNA was somewhat greater than that into spleen RNA. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [3-14C]serine and [8-14C]adenine. 4. The adverse effects of pyridoxine deficiency on the biosynthesis of nucleic acids and cell multiplication are discussed in relation to the role of pyridoxal phosphate in the production of C1 units via the serine-hydroxymethylase reaction.  相似文献   

10.
Tracer feeding experiments with Camptotheca acuminata plants show that [1′-14C]L-tryptophan, [Ar-3H4]L-tryptophan, [Ar-3H4,1′-14C]tryptophan, [1′-14C]-tryptamine, [2-14C]DL-mevalonate, and [2-14C]geraniol-[2-14C]nerol are incorporated into camptothecin. Direct stem injection of the labeled precursors into C. acuminata plants resulted in a substantial increase in the activity of isolated Camptotheca alkaloids as compared to root feeding of the same tracer.  相似文献   

11.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

12.
《Insect Biochemistry》1986,16(1):17-23
The synthesis of [4-14C]cholesta-4,6-dien-3-one and [4-14C]3β-hydroxy-5α-cholestan-6-one is described. Both [4-14C]cholest-4-en-3-one and [4-14C]cholesta-4,6-dien-3-one were not incorporated significantly into ecdysteroids compared to [1α,2α-3H]cholesterol in fifth instar and maturing adult female Schistocerca gregaria. Similarly, [4-14C]3β-hydroxy-5α-cholestan-6-one was not incorporated significantly in the latter system. The results suggest that none of the three 14C-substrates are intermediates in ecdysteroid biosynthesis from cholesterol, although possible complications from permeability barriers cannot be discounted. [4-14C, 7-3H]7-dehydrocholesterol has been synthesized and incorporated into ecdysteroids in adult female Schistocerca gregaria and in Spodoptera littoralis pupae. Although approximately half the tritium was eliminated during ecdysteroid synthesis in S. gregaria, there was essentially complete retention of the tritium in Spodoptera. The results support the direct incorporation of 7-dehydrocholesterol into ecdysteroids and not via cholesterol. A possible explanation for the loss of appreciable tritium in S. gregaria is discussed.  相似文献   

13.
Biosynthetic pathways to p-hydroxybenzoic acid in polar lignin were examined by tracer experiments. High incorporation of radioactivity to the acid was observed when shikimic acid-[1-14C], phenylalanine-[3-14C], trans-cinnamic acid-[3-14C], p-coumaric acid-[3-14C] and p-hydroxybenzoic acid-[COOH-14C] were administered, while incorporation was low from shikimic acid-[COOH-14C], phenylalanine-[1-14C], phenylalanine-[2-14C], tyrosine-[3-14C], benzoic acid-[COOH-14C], sodium acetate-[1-14C] and d-glucose-[U-14C]. Thus p-hydroxybenzoic acid in poplar lignin is formed mainly via the pathway: shikimic acid → phenylalanine → trans-cinnamic acid → p-coumaric acid → p-hydroxybenzoic acid.  相似文献   

14.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

15.
This study focuses on the activity of the pentose-phosphate pathway and its relationship to de novo synthesis of fatty acids and cholesterol in oligodendrocyte-enriched glial cell cultures derived from 1-week old rat brain. The proportion of glucose that was metabolized along the pentose-phosphate pathway was estimated by measuring 14CO2 production from [1-14C]-, [2-14C]- and [6-14C]glucose, the utilization of glucose and the production of lactate. Incorporation of 14C from [14C]glucose and from [3-14C]acetoacetate into lipids was analysed. The pentose- phosphate pathway produced much more CO2 from glucose than the Krebs cycle, although it accounted for only a small part of the consumption of glucose (< 3%). The higher 14CO2 production from [2-14C]glucose than from [6-14C]glucose indicated that recycling of the products of the pentose-phosphate pathway takes place in these cells.Gradual inhibition of the pathway with increasing concentrations of 6-aminonicotinamide resulted in a parallel inhibition of the conversion of acetoacetate and of glucose into fatty acids and into cholesterol. Glycolysis was also strongly inhibited in the presence of 6-aminonicotinamide whereas the activity of the Krebs cycle was not affected.These results suggest that de novo synthesis of fatty acids and cholesterol by oligodendrocytes of neonatal rats is closely geared to the activity of the pentose-phosphate pathway in these cells.  相似文献   

16.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

17.
A simple, three-step conversion of 1,2-O-isopropylidene-α-d-glucofuranose into l-ascorbic acid, originally described by Bakke and Theander, was used to prepare l-[4-14C]ascorbic acid from milligram amounts of d-[3-14C]glucopyranose in 28% radioisotopic yield. In addition, l-[6-14C]- and l-[U-14C]-ascorbic acid were prepared from d-[1-14C]- and d-[U-14C]-glucopyranose, respectively. The procedure is useful for the synthesis of l-ascorbic acid bearing isotopic hydrogen, carbon, or oxygen atoms at specific positions, subject only to the availability of starting material.  相似文献   

18.
About ScienceDirect 《BBA》1978,504(3):466-467
Culture of Trypanosoma cruzi (Tulahuen strain) in the presence of ethidium bromide (1–20 μg/ml) resulted in dyskinetoplasty and inhibition of growth, to an extent depending on the dye concentration and the medium composition. The ethidium bromide-induced dyskinetoplasty caused a decrease of (a) the cytochrome content of epimastigotes (a,a3 and b species); (b) the rate of respiration (endogenous or supported by D-glucose); and (c) the rate of production of 14CO2 from [2-14C]acetate and [1-14C]glucose. [2-14C]Acetate oxidation to 14CO2 was affected by dyskinetoplasty more than [1-14C]glucose oxidation, particularly at the exponential growth phase. With dyskinetoplastic epimastigotes, diminution of 14CO2 production from [2-14C]acetate largely exceeded that of oxygen uptake, while with [1-14C]glucose, 14CO2production and respiration were affected to about the same extent. Dyskinetoplasty also decreased the incorporation of [2-14C]acetate carbon into intermediates of the tricarboxylic acid cycle and related amino acids, and modified the distribution pattern of 14C in accordance with the decrease of respiration. Reduction of cytochrome content of epimastigotes by restriction of heme compounds during growth decreased 14CO2 production from [2-14C]acetate, like the ethidium-induced dyskinetoplasty. The same occurred after inhibition of electron transfer by antimycin and cyanide, though to a much more significant extent, thus confirming the functional association of electron transport at the mitochondrial cytochrome system of T. cruzi and the enzymatic reactions of the tricarboxylic acid cycle.  相似文献   

19.
1. [14C]Malonyl-CoA was incorporated into isoprenoids by cell-free yeast preparations, by preparations from pigeon and rat liver, and by Hevea brasiliensis latex. 2. In agreement with previous reports the incorporation of acetyl-CoA into isoprenoids was not inhibited by avidin and was not stimulated by HCO3. In a cell-free yeast preparation addition of HCO3 stimulated the formation of fatty acids from acetyl-CoA and decreased the incorporation into unsaponifiable lipids. 3. The labelling patterns of β-hydroxy-β-methylglutaryl-CoA formed from [2-14C]- and [1,3-14C]-malonyl-CoA in rat and pigeon liver preparations were those that would be expected if malonyl-CoA underwent decarboxylation to acetyl-CoA before incorporation. 4. The labelling pattern of ergosterol formed by cell-free yeast preparations from [2-14C]malonyl-CoA was also consistent with decarboxylation of malonyl-CoA before incorporation. 5. The incorporation of [2-14C]malonyl-CoA into mevalonate by rat liver preparations was related to the malonyl-CoA decarboxylase activity present in the preparation.  相似文献   

20.
[1-14C]Octadecyl glyceryl ether did not label alkanes in the leaves of Brassica oleracea and Pisum sativum while [1-14C]octadecanol and [1-14C]octadecanoic acid readily labeled the alkanes. About 40% of the exogenous-labeled glyceryl ether was incorporated intact into choline phosphatide while 10–20% was converted into fatty acids and alcohols. [1-14C]octadecanol was not converted into alkyl glyceryl ether, but it was oxidized to the corresponding acid and then incorporated into alkanes. These results show that alkyl ether is not an intermediate in alkane biosynthesis. When [1-14C-1-3H]-octadecanol was fed to the leaves of B. oleracea and P. sativum, only the 14C and no 3H was incorporated into alkanes, ketones, and secondary alcohols. These results show that fatty alcohols are first oxidized to the acid before being incorporated into alkanes, ruling out fatty alcohol, alkyl ether, and alk-1-enyl ether as intermediates in alkane biosynthesis. The exogenous alcohols were also readily esterified into wax esters in both tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号