首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth of wheat seedlings (Triticum sativum) is inhibited by abscisic acid (ABA). The inhibition increases with the concentration of ABA (from 10-6M to 5 × 10-5M) and is stronger in the case of coleoptiles and first leaves than in roots. In contrast, naphthaleneacetic acid (ANA), at 10-5M, exerts its greatest inhibitory effect on the roots. The inhibitory effect of ABA on coleoptiles can be partially overcome by kinetin and to a much smaller degree by gibberellic acid. Neither of these two compounds, at 10-5M, had any effect on the ABA-induced inhibition of root growth. The RNA and DNA contents per plant organ are considerably reduced after treatment of the seedlings with ABA, particularly in the coleoptiles and the first leaves. The incorporation of uracil-2-14C and uridine T (G) into RNA of treated seedlings is reduced in the case of coleoptiles and first leaves, but considerably enhanced in roots. The mechanism of the action of ABA is discussed in the light of these results.  相似文献   

2.
Injection into Drosophila larvae of extracts of Pierides and mutants of Drosophila treated by reduced folic acid and pterins always produce juvenilising effects. The hypothesis is therefore suggested that juvenile hormone is released either in the chrysalids or in the injected Drosophila larvae. The addition of juvenile hormone to the injection mixture leads to the killing of pupae and imaginal discs hypertrophied by interstitial liquid or undifferentiated cells in F2 progeny, which supports the above hypothesis. Addition of cyclic AMP gives the same results but the lethal pupae occur at a slightly later stage; imaginal discs are partially developed, leading to imperfectly developed limbs.  相似文献   

3.
The characteristics of the sedimentary grains produced by the sea urchin Echinometra mathaei were described from two reef sites: a fringing Acropora-dominated reef at La Reunion island (Indian Ocean) and a barrier Porites-dominated reef at Moorea island (French Polynesia). The composition of the sediment produced by Echinometra was determined from SEM observations. The size and shape of the particles were measured by using image analysis method. The grain diameters range between a few micrometres and 2 mm, with a large predominance (more than 80 %) of particles smaller than 400 μm. The grain size distribution is dependent on the nature of the grazed substratum. Echinometra individuals collected at La Reunion on branching Acropora colonies produce a higher proportion of particles smaller than 200 μm compared to those collected at Moorea on massive Porites colonies. At Moorea, more grains having a diameter comprised between 200 and 500 μm are produced. The microstructure of coral substrata affects the mean particle diameter, which is 192,17 μm for a Acropora substratum and 244,69 μm for a Porites substratum. Since the sediment derived from Acropora erosion is finer, the proportion of suspended material that is exported from the reef is greater at La Reunion than at Moorea. We estimate that, for similar erosion rates and hydrodynamic conditions, the production of sands by Echinometra mathaei is higher and the retention of this erosional sediment more effective on reefs dominated by massive Porites than on Acropora-dominated reefs. This result is in accordance with the proportions of suspension-moving grains that have been previously measured on Moorea and La Reunion reefs. This study highlighted the effect of coral communities on the production of particles related to the bioerosion and on the sedimentary budget.  相似文献   

4.
DNA damage mediated by photosensitizers participates in solar carcinogenesis. Fluorescence measurement and high-performance liquid chromatography analysis demonstrated that photoirradiated folic acid, one of the photosensitizers in cells, generates pterine-6-carboxylic acid (PCA). Experiments using 32P-labeled DNA fragments obtained from a human gene showed that ultraviolet A-irradiated folic acid or PCA caused DNA cleavage specifically at consecutive G residues in double-stranded DNA after Escherichia coli formamidopyrimidine-DNA glycosylase or piperidine treatment. The amount of 8-oxo-7,8-dihydro-2(')-deoxyguanosine formed through this DNA photoreaction in double-stranded DNA exceeded that in single-stranded DNA. Kinetic studies suggested that DNA damage is caused mainly by photoexcited PCA generated from folic acid rather than by folic acid itself. In conclusion, photoirradiated folic acid generates PCA, which induces DNA photooxidation specifically at consecutive G residues through electron transfer. Excess intake of folic acid supplements may increase a risk of skin cancer by solar ultraviolet light.  相似文献   

5.
6.
Sperm DNA injury is one of the common causes of male infertility. Folic acid deficiency would increase the methylation level of the important genes, including those involved in DNA double‐strand break (DSB) repair pathway. In the early stages, we analysed the correlation between seminal plasma folic acid concentration and semen parameters in 157 infertility patients and 91 sperm donor volunteers, and found that there was a significant negative correlation between seminal folic acid concentration and sperm DNA Fragmentation Index (DFI; r = −0.495, p < 0.01). Then through reduced representation bisulphite sequencing, global DNA methylation of sperm of patients in the low folic acid group and the high folic acid group was analysed, it was found that the methylation level in Rad54 promoter region increased in the folic acid deficiency group compared with the normal folic acid group. Meanwhile, the results of animal model and spermatocyte line (GC‐2) also found that folic acid deficiency can increase the methylation level in Rad54 promoter region, increased sperm DFI in mice, increased the expression of γ‐H2AX, that is, DNA injury marker protein, and increased sensitivity of GC‐2 to external damage and stimulation. The study indicates that the expression of Rad54 is downregulated by folic acid deficiency via DNA methylation. This may be one of the mechanisms of sperm DNA damage caused by folate deficiency.  相似文献   

7.
Food fortification with folic acid and increased use of vitamin supplements have raised concerns about high folic acid intake. We previously showed that high folic acid intake was associated with hepatic degeneration, decreased levels of methylenetetrahydrofolate reductase (MTHFR), lower methylation potential, and perturbations of lipid metabolism. MTHFR synthesizes the folate derivative for methylation reactions. In this study, we assessed the possibility that high folic acid diets, fed to wild-type and Mthfr+/− mice, could alter DNA methylation and/or deregulate hepatic cholesterol homeostasis. Digital restriction enzyme analysis of methylation in liver revealed DNA hypomethylation of a CpG in the lipolysis-stimulated lipoprotein receptor (Lsr) gene, which is involved in hepatic uptake of cholesterol. Pyrosequencing confirmed this methylation change and identified hypomethylation of several neighboring CpG dinucleotides. Lsr expression was increased and correlated negatively with DNA methylation and plasma cholesterol. A putative binding site for E2F1 was identified. ChIP-qPCR confirmed reduced E2F1 binding when methylation at this site was altered, suggesting that it could be involved in increasing Lsr expression. Expression of genes in cholesterol synthesis, transport or turnover (Abcg5, Abcg8, Abcc2, Cyp46a1, and Hmgcs1) was perturbed by high folic acid intake. We also observed increased hepatic cholesterol and increased expression of genes such as Sirt1, which might be involved in a rescue response to restore cholesterol homeostasis. Our work suggests that high folic acid consumption disturbs cholesterol homeostasis in liver. This finding may have particular relevance for MTHFR-deficient individuals, who represent ~10% of many populations.  相似文献   

8.
A quantitative relationship has been established between the number of particles, for example bacteriophages, counted in ultrathin sections of bacteria and the total number present in the whole bacterial cells. The factor F relating particles counted per section with the total number of these particles per entire bacterium could be arrived at by two methods, which proved to give results in close agreement. The first involves knowledge of the average volume of a bacterial section in proportion to the average volume of a whole bacterium; if the mean number of appearances of the same particle on consecutive sections is also known, F may then be calculated. The thickness of sections and, therefore, their volume, as well as the average number of times a single particle is sectioned could be learned by examination of serial sections. By counting the relative number of T2 phage particles which had been intersected once or twice, and relating this proportion to the known phage dimensions, the thickness of the sections was determined to be about 400 A. The second measurement of F could be made in a particular case of late phage development where the number of particles per cell was countable or titratable directly in the bacterial lysate, this number being compared with the number seen in sections of the bacteria just before lysis. The different sources of errors are discussed. The statistical error is under 20 per cent, while the systematic errors are higher and cannot yet be indicated precisely. After a very cautious estimation of the upper limits, we can state, however, that the counts made with this method are certainly reliable to well within a factor of two.  相似文献   

9.
Stimulation of de novo synthesis of δ-aminolevulinate dehydralasc of radishes grown under far-red light .
Density labelling studies of δ-aminolevulinate dehydratase (ALAD) in cotyledons of radish ( Raphanus sativus L. cv. Longue Rave Saumonée) seedlings demonstrate that far-red light stimulates de novo synthesis of ALAD and that the turn-over of this enzyme is very poor. Cycloheximide reduces considerably both the increase of ALAD activity and the incorporation of deuterium in ALAD, which indicates that ALAD synthesis depends upon cytoplasmic ribosomes.  相似文献   

10.
The present study investigated the roles of folic acid and DNA methyltransferases (DNMTs) in the differentiation of neural stem cells (NSCs). Neonatal rat NSCs were grown in suspended neurosphere cultures and identified by their expression of SOX2 protein and capacity for self-renewal. Then NSCs were assigned to five treatment groups for cell differentiation: control (folic acid-free differentiation medium), low folic acid (8 μg/mL), high folic acid (32 μg/mL), low folic acid and DNMT inhibitor zebularine (8 μg/mL folic acid and 150 nmol/mL zebularine), and high folic acid and zebularine (32 μg/mL folic acid and 150 nmol/mL zebularine). After 6 days of cell differentiation, immunocytochemistry and western blot analyses were performed to identify neurons by β-tubulin III protein expression and astrocytes by GFAP expression. We observed that folic acid increased DNMT activity which may be regulated by the cellular S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and the abundance of neurons but decreased the number of astrocytes. Zebularine blocked these effects of folic acid. In conclusion, folic acid acts through elevation of DNMT activity to increase neuronal differentiation and decrease astrocytic differentiation in NSCs.  相似文献   

11.
A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN) was developed. For this strategy, Magnetic Albumin Nanospheres (MAN), composed of superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA), were covalently conjugated with folic acid (FA) ligands to enhance the targeting capability of the particles to folate receptor (FR) over-expressing tumours. Subsequently, a near-infrared (NIR) fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells). Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels.  相似文献   

12.
Lipoproteins HDL2 and HDL3 inhibit DNA synthesis and sterol synthesis in human Con A-stimulated lymphocytes cultured in a medium supplemented with 20 per cent lipoprotein deficient serum. On the basis of the amount of proteins added, HDL2 is more efficient on DNA and sterol synthesis than HDL3 and less efficient than LDL. However, on the basis of the amount of cholesterol added, the inhibition of sterol synthesis induced by these three lipoproteins is not significantly different. At all concentrations of these three lipoproteins, the inhibition of sterol synthesis is higher than the inhibition of DNA synthesis.  相似文献   

13.

Background

Countries worldwide recommend women planning pregnancy to use daily 400 µg of synthetic folic acid in the periconceptional period to prevent birth defects in children. The underlying mechanisms of this preventive effect are not clear, however, epigenetic modulation of growth processes by folic acid is hypothesized. Here, we investigated whether periconceptional maternal folic acid use and markers of global DNA methylation potential (S-adenosylmethionine and S-adenosylhomocysteine blood levels) in mothers and children affect methylation of the insulin-like growth factor 2 gene differentially methylation region (IGF2 DMR) in the child. Moreover, we tested whether the methylation of the IGF2 DMR was independently associated with birth weight.

Methodology/Principal Findings

IGF2 DMR methylation in 120 children aged 17 months (SD 0.3) of whom 86 mothers had used and 34 had not used folic acid periconceptionally were studied. Methylation was measured of 5 CpG dinucleotides covering the DMR using a mass spectrometry-based method. Children of mother who used folic acid had a 4.5% higher methylation of the IGF2 DMR than children who were not exposed to folic acid (49.5% vs. 47.4%; p = 0.014). IGF2 DMR methylation of the children also was associated with the S-adenosylmethionine blood level of the mother but not of the child (+1.7% methylation per SD S-adenosylmethionine; p = 0.037). Finally, we observed an inverse independent association between IGF2 DMR methylation and birth weight (−1.7% methylation per SD birthweight; p = 0.034).

Conclusions

Periconceptional folic acid use is associated with epigenetic changes in IGF2 in the child that may affect intrauterine programming of growth and development with consequences for health and disease throughout life. These results indicate plasticity of IGF2 methylation by periconceptional folic acid use.  相似文献   

14.
Free radical mediated oxidative damage is one of the prime factors for atherogenic changes in humans. We have shown that the folic acid administration reduced the risk of the atherogenic factors induced by γ -radiation. Folic acid administration prevented the radiation induced increase in the plasma lipoprotein lipase activity and also prevented the radiation-induced increase in the hepatic cholesterol and triglycerides levels. These results indicate the role of folic acid as an antiatherogenic agent. Further, we also report the radioprotective property of folic acid as demonstrated by reduction in the radiation induced membrane damage as measured by lipid peroxidation products and DNA damage, which was measured by alkaline comet assay.  相似文献   

15.
Isolation and structure of phage lambda head-mutant DNA   总被引:11,自引:0,他引:11  
High molecular weight DNA accumulates in bacteria in which λ is multiplying but cannot complete the formation of new phage particles due to a defect in head assembly. Accumulated λ DNA has been isolated from induced mitomycin C-treated lysogens by means of a shift in buoyant density labels from heavy to light and fractionation by density-gradient sedimentation for completely light DNA. Head formation was blocked in these lysogens by amber mutations in genes D or E, which specify the two major head proteins. The purified DNA is at least 80% λ by DNA-DNA hybridization and some preparations are close to 100% λ by this test.  相似文献   

16.
17.
Experiments designed to illuminate the mechanism by which folic acid and thymidine inhibit expression of the Xq28 fragile site in human lymphocytes are described. The fragile site is induced by 5-fluorodeoxyuridine (FUdR), a potent inhibitor of thymidylate synthetase, in the presence of otherwise inhibiting concentrations of folic acid but not in the presence of thymidine. These results indicate that the fragile site is expressed because of depletion of deoxythymidine monophosphate (dTMP) available for DNA synthesis.  相似文献   

18.
The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0–200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20–40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth.  相似文献   

19.
Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the "normal" physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P<0.0001, P=0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy gamma-rays) on day 9 relative to un-irradiated controls (P<0.05). Folic acid deficiency and gamma-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P=0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend<0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage.  相似文献   

20.
Folic acid (vitamin B9) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595 µg/L) more vitamin than the wild-type and by far represents the highest yield reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号