首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf yellowing and brown discoloration was observed in tobacco plants cv. Burley TN97 in tobacco fields of central Greece in 2002. Fusarium oxysporum f. sp. nicotianae was isolated from symptomatic plants and Koch's postulates were fulfilled. The pathogenicity of the isolated fungus was examined on five tobacco cultivars (Burley TN97, BurleyB21, VirginiaBE9, Virginia Niki and Anatolika KE26/2). The pathogen was present in tobacco seed batches imported in 2000 and 2001, which indicates that the infected seed is most probably the primary source of the disease in Greece. As Fusarium oxysporum f. sp. vasinfectum can also cause vascular wilt in tobacco, the hypothesis that the isolated F. oxysporum strain belongs to f. sp. vasinfectum was excluded by a pathogenicity test to cotton cv. Acala SJ‐2. This is the first report of F. oxysporum f. sp. nicotianae in Greece and the second in the European Union, although the seedborne nature of the pathogen has not been previously reported in Europe.  相似文献   

2.
The enzymatic activity and the biocontrol ability of two new isolates of Trichoderma spp. (T-68 and Gh-2) were compared in laboratory and glasshouse experiments with a previously studied T. harzianum strain (T-35). In dual culture tests with Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. vasinfectum, isolates T-68 and Gh-2 overgrew the colonies of Fusarium, whereas T-35 failed to parasitize both wilt pathogens. Under glasshouse conditions, the three isolates of Trichoderma were effective in controlling Fusarium wilt of cotton but only T-35 was effective against F. oxysporum f. sp. melonis on muskmelon. When the three Trichoderma isolates were grown on liquid media containing laminarin, colloidal chitin or F. oxysporum f. sp. melonis cell walls as sole carbon sources, maximum β-1,3-glucanase and chitinase specific activity in the culture filtrates of all fungi was reached after 72h of incubation. When culture filtrates of the three Trichoderma isolates were incubated with freeze-dried mycelium of F. oxysporum f. sp. melonis or F. oxysporum f. sp. vasinfectum, different concentrations of glucose and N-acetyl-D-glucosamine were released. Overall no correlation was found between enzymatic activity and the biocontrol capability against Fusarium wilt on muskmelon and cotton.  相似文献   

3.
Improved pathogen-free seed germination and better seedling growth were obtained by hot-water treatments at 60 °C for 10 min of seed of the cotton varieties Karnak and Ashmouni, and at 45 °C for 5 min of seed of the flax varieties Giza 4 and Baladi. These treatments also reduced pre- and post-emergence losses due to Rhizoctonia solani and Fusarium oxysporum f.sp. vasinfectum in cotton, and to F. oxysporum f.sp. lini in flax, and resulted in better growth of the surviving plants.  相似文献   

4.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

5.
Pathogenicity tests with Fusarium oxysporum isolated form Malaysian oil palm were made with oil palms seedlings raised form Malaysian seed as well s with wilt-susceptible seedlings gown from African seed. Oil palm seedlings grown form Malaysian seed were also inoculated with African isolates of F. oxysporum f. sp. elaeidis and F. oxysporum var. redolens. The experiments were made under normal soil moisture conditions and under water stress. F. oxysporum f. sp. elaeidis isolates form Africa were pathogenic to oil palm seedlings from Malaysian seeds but the Malaysian F oxysporum isolates were non-pathogenic to plams grown from Malaysian seed or the wilt-susceptible palms from African seed. Seedlings from Malaysian seed proved to be highly susceptible to the vascular wilt disease caused by F. oxysporum f. sp. elaeidis as 75–90% of the palms were infected. The susceptibility of the palms from Malaysian seed varied with different African isolates tested. The Yaligimba isolate from Zaire which was found to be F. oxysporum var. redolens was the most virulent. Disease was more severe when oil palm seedlings were subjected to a period of water stress. The incidence of death in the seedlings under stress conditions was 45% as compared with only 15% for palms grown under normal conditions.  相似文献   

6.
Abstract

Fusarium species are known to play a role in several diseases of cotton including the seedling disease complex, wilt, and boll rot. Therefore, a mycoflora study was conducted in 1998 in order to identify Fusarium species found in association with cotton roots. A total of 109 samples of cotton seedlings infected with post-emergence damping-off or rotted roots of adult plants were obtained from different cotton-growing areas in Egypt. Forty-six isolates were recovered and were identified as follows: F. oxysporum (28 isolates), F. moniliforme (9), F. solani (6), F. avenaceum (2), F. chlamydosporum (1). F. oxysporum, F. moniliforme and F. solani, the dominant species, accounted for 60.9%, 19.6% and 13% of the total isolates, respectively in 1998. F. oxysporum showed the highest isolation frequency in Beharia and Minufiya while F. moniliforme showed the most isolation frequency in Minufiya and Gharbiya. F. oxysporum was one of the major taxa of the Fusarium assemblage from Giza 70. F. oxysporum showed the most frequently isolated fungus in May while F. moniliforme and F. solani were the most frequently isolated fungi in August. Isolation frequency of Fusarium spp. during July and August was significantly greater than that of April or June. This implies that cotton roots are subjected more to colonization by Fusarium spp. as plants mature. Regarding pathogenicity, of the 46 isolates of Fusarium spp. tested under greenhouse conditions, 38 isolates (82.4%) were pathogenic to seedlings of Giza 89. This study indicates that F. oxysporum and F. moniliforme are important pathogens in the etiology of cotton damping-off in Egypt.  相似文献   

7.
Abstract

The pathogenicity of nine isolates of Fusarium oxysporum f. sp. vasinfectum (Fov) was evaluated on seedlings of 30 cotton (Gossypium barbadense L.) genotypes in 2005 and 2006. Isolate×genotype interaction was a highly significant (P < 0.01) source of variation in wilt incidence, suggesting that physiologic specialization exists within Fov isolates. Cluster analysis of aggressiveness of isolates and susceptibility of genotypes by the unweighted pair-group method based on arithmetic means (UPGMA) placed the isolates and the genotypes in several groups. Isolates were separated into two distinct groups. One group was closely related to race 5 while the other group was closely related to race 1. Cluster analysis also demonstrated that the Egyptian commercial cultivars had unique susceptibility patterns to Fov isolates remotely related to those of the other genotypes. The interaction between experiments of 2005 and 2006 was mainly due to a differential effect of years on the disease incidence for cotton cultivars.  相似文献   

8.
Polyclonal antiserum was elicited against a strain of Fusarium oxysporum f.sp. narcissi (GCRI80/26) and a specific and sensitive enzyme-linked immunosorbent assay developed. Antiserum raised to cell wall fractions gave better recognition than that to cytoplasmic fractions. Recognition was equally good in artificially and naturally infected bulbs. Little cross-reactivity in bulb tissue was shown by three other bulb-rotting fungi. Nine isolates of F. oxysporum f.sp. narcissi from a wide geographic area gave similar results in an indirect ELISA of mycelial extracts, although some cross-reactivity was observed with two other Fusarium spp. Four Fusarium spp. and four other fungi showed little cross-reactivity. Ten days after inoculation the pathogen was readily detected in the base plate area of three Narcissus cultivars and points remote from the inoculation site in the most susceptible cultivar. A direct correlation was observed between positive results in the enzyme-linked immunosorbent assay and recovery of the pathogen on selective medium.  相似文献   

9.
The virulence and vegetative compatibility of eight Dutch and four Italian isolates of Fusarium oxysporum obtained from lily were compared. The virulence was tested by determination of the specific interaction between the Fusarium isolates and eight lily cultivars. A specific interaction was not found, so the existence of races was not demonstrated. Six of the twelve isolates turned out to be non-pathogenic for lily. The pathogenic isolates fell in four vegetative compatibility groups. No vegetative compatibility was found between isolates of F. oxysporum f. sp. lilii and those of f. sp. gladioli.  相似文献   

10.
Virulence of 31 Kenyan isolates of Fusarium oxysporum obtained from bananas showing symptoms of Panama disease was tested against the differential banana cvs Bluggoe, Gros Michel, Dwarf Cavendish, and two other local cvs Muraru and Wang'ae. Seventeen isolates were assigned to either race 1 or race 2 of F. oxysporum f.sp. cubense (FOC). Race 4 was not apparent in this sample of 31 isolates from Kenya as none were pathogenic to cv. Cavendish, and no wilted Cavendish have been observed in field surveys in Kenya. Races could not be assigned to 12 isolates as they were virulent on more than one differential cultivar, and two were apparently not pathogenic. All isolates assigned to races 1 and 2 belonged to the VCG bridging complex 0124/5/8/20, but some other isolates belonging to this VCG complex could not be assigned to race. All five isolates assigned to VCG 01212 could not be assigned to known races. Considerable variability thus exists within FOC isolates within this region. Local cultivars of banana showed differential resistance to the pathogen. The interaction of cultivars and isolates on the level of disease was significant. Overall, cv. Wang'ae was the most susceptible to most of the isolates tested, regardless of their race, and could therefore be used as a reference cultivar in pathogenicity tests of isolates of FOC in the East African region. Of the cultivars tested that are widely grown on smallholder farms in Kenya, Muraru was the least susceptible.  相似文献   

11.
The pathogenicity of five isolates of Fusarium oxysporum obtained from infected gerbera (Gerbera jamesonii), chrysanthemum (Chrysanthemum morifolium), Paris daisy (Argyranthemum frutescens) and African daisy (Osteospermum sp.) plants was tested on some varieties of the following Compositae hosts: C. morifolium, G. jamesonii, Argyranthemum frutescens (Paris daisy) and Osteospermum sp. and compared with the host range and pathogenicity of an isolate of F. oxysporum f. sp. chrysanthemi obtained from the ATCC collection. The results indicated that isolates of F. oxysporum from G. jamesonii as well as those from A. frutescens and Osteospermum sp. belong to the forma specialischrysanthemi. The isolate from gerbera was virulent on all tested varieties of gerbera, C. morifolium, A. frutescens and Osteospermumsp. Similar results were obtained testing the isolates obtained from A. frutescens and Osteospermumsp. The strain from C. morifolium infected cultivar of gerbera, A. frutescens and Osteospermum sp. The pathogenicity of isolate of F. oxysporum f. sp. chrysanthemi obtained from the ATCC showed a different cultivar range particularly in the case of chrysanthemum and gerbera.  相似文献   

12.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

13.
The pathogenicity of different isolates of Fusarium oxysporum obtained from plants of Gerbera (Gerbera jamesonii), Chrysanthemum (Chrysanthemum morifolium), Paris daisy (Argyranthemum frutescens) and African daisy (Osteospermum sp.), all in the family Asteraceae, was tested on different cultivars of these hosts, to assess their pathogenicity. The reactions were compared with those of isolates of F. oxysporum f. sp. chrysanthemi and of f.sp. tracheiphilum obtained from the American Type Culture Collection. We found that isolates of F. oxysporum f. sp. chrysanthemi can be distinguished as three physiological races on the basis of their pathogenicity to the panel of differential cultivars. Sequencing of the intergenic spacer (IGS) region of ribosomal DNA (rDNA) and phylogenetic analysis showed that the Fusarium races fell into three phylogenetic groups, which coincided with those observed in pathogenicity tests. Analysis of the IGS sequences revealed a high degree of similarity among strains from Italy and Spain from different host species, suggesting that recent outbreaks in these ornamentals were probably caused by introduction of infected nursery material from a common origin.  相似文献   

14.
The utility of fatty acid methyl ester (FAME) profiles for characterization and differentiation of isolates of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was investigated. Two fatty acid analysis protocols of the normal (MIDI) and a modified MIDI method were used for their utility. Only the modified MIDI method allowed a clear differentiation between F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici. FAME profiles using the modified MIDI method gave the most consistent and reproducible analyzed fatty acid data. Evaluation of the FAME profiles based on cluster analysis and principal-component analysis revealed that FAME profiles from tested isolates were correlated with the same vegetative compatibility groups (VCGs) compared to the same races in F. oxysporum f. sp. lycopersici. Results indicated that FAME profiles could be an additional tool useful for characterizing isolates and forma species of F. oxysporum obtained from tomato.  相似文献   

15.
The antagonistic potentials of endophytic bacteria isolated from the roots of six cotton cultivars at different developmental stages were determined in vitro toward three pathogens: Verticillium dahliae Kleb V107 and V396 and Fusarium oxysporum f.sp. vasinfectum (F108). The populations of antagonistic endophytic bacteria (AEB) toward V107, V396, and F108 at the flowering and maturation stages were significantly higher than those at the seedling stage were. More AEB were found to be antagonistic toward pathogens V396 and F108 than V107. Results from the multivariate analysis of variance showed that the populations of AEB were significantly different for the main factors of cultivars, stages, and their interactions. Based on 16S rDNA sequence analysis, the 39 AEB isolates that antagonized V107, V396, and F108 (BAEB) consisted of seven genera, in which the genus of Enterobacter (17 out of 39) and Pantoea (14 out of 39) were predominant among the BAEB isolates. Characterized by BOX-PCR fingerprints, these 39 BAEB isolates represented 35 different cluster types. To explore the antagonistic mechanisms, the agar diffusion method was used to detect cell-wall-degrading enzyme activity and siderophore secretion. Nearly half of these BAEB isolates showed protease and chitinase activity, while all 39 BAEB isolates excreted siderophores. However, pectinase, cellulase, and xylanase activity were hardly detected. A germination experiment revealed that nine of the 39 BAEB isolates significantly improved the vigor index of the cotton seedlings.  相似文献   

16.
The effect of root-knot nematode (Meloidogyne incognita) on external wilt symptoms and on the cotton plant's vascular response to stem-inoculation with Fusarium oxysporum f. sp. vasinfectum was investigated. Wilt symptoms were more severe in all plants inoculated with both organisms than with the fungus alone but relative wilt resistance of the cultivars was maintained. Greater symptom severity was associated with greater fungal proliferation in the stele and this was related to the ability of the nematode to reduce the efficiency of vascular occlusion. The nematode had no effect on the accumulation of infection-induced terpenoid aldehyde compounds.  相似文献   

17.
D. Cafri    J. Katan    T. Katan 《Journal of Phytopathology》2005,153(10):615-622
The population structure of Fusarium oxysporum f. sp. cucumerinum was studied using the vegetative compatibility grouping (VCG) approach. All 37 of the examined isolates from Israel were assigned to VCG 0180, the major VCG found in North America and the Mediterranean region. Approximately two‐thirds of the tested isolates were pathogenic to both cucumber and melon, but cumulatively they were more aggressive on cucumber, their major host, than on melon. Disease symptoms on melon plants were less destructive and often expressed as growth retardation. Melon cultivars differing in Fom genes for resistance to F. oxysporum f. sp. melonis were inoculated with three isolates of F. oxysporum f. sp. cucumerinum. Results showed that Fom genes do not confer resistance to F. oxysporum f. sp. cucumerinum, although different horticultural types may respond differently to this pathogen. The reciprocal inoculation of F. oxysporum f. sp. melonis on cucumber, using four physiological races, did not result in disease symptoms or growth retardation. It is concluded that cucumerinum and melonis should remain two distinct formae speciales.  相似文献   

18.
Pathogenicity test ofFusarium oxysporum on ten cultivars of soybean revealed Soymax and Punjab-1 to be most resistant while JS-2 and UPSM-19 were most susceptible. Antigens were prepared from the roots of all the ten varieties of soybean and the mycelium ofF. oxysporum. Polyclonal antisera were raised against the mycelial suspension ofF. oxysporum and the root antigen of the susceptible cultivar UPSM-19. Cross reactive antigens shared by the host and the pathogen were detected first by immunodiffusion. The immunoglobulin fraction of the antiserum was purified by ammonium sulfate precipitation and DEAE-Sephadex column chromatography. The immunoglobulin fractions were used for detection of cross-reactive antigens by enzyme-linked immunosorbent assay. In enzyme-linked immunosorbent assay, antigens of susceptible cultivars showed higher absorbance values when tested against the purified anti-F. oxysporum antiserum. Antiserum produced against UPSM-19 showed cross-reactivity with the antigens of other cultivars. Indirect staining of antibodies using fluorescein isothiocyanate indicated that in cross-sections of roots of susceptible cultivar (UPSM-19) cross-reactive antigens were concentrated around xylem elements, endodermis and epidermal cells, while in the resistant variety, fluorescence was concentrated mainly around epidermal cells and distributed in the cortical tissues. CRAs were also present in microconidia, macroconidia and chlamydospores of the fungus.  相似文献   

19.

During years 2001, 2002 and 2003 the gravity of the Fusarium wilt in 1000 hectares of melon culture was evaluated in Colima (Mexico). In spite of the soil disinfections with methyl bromide, the losses could reach 25% of the final production. The analysis of 4 soil samples from the fields with ill plants, in a selective medium for Fusarium, allowed to detect the presence of F. oxysporum. By means of the presented technique “soil phytopathometry”, 31 isolates of F. oxysporum f. sp. melonis were obtained from the soil samples. The isolates were inoculated on melon plants to evaluate their pathogenicity. The 31 isolates inoculated, produced the symptoms of chlorosis and wilting, in melon cultivars that allowed us to affirm that all isolates were race 1 of F. oxysporum f. sp. melonis. Being this the first news of the presence of F. oxysporum f. sp. melonis in the state of Colima (Mexico).  相似文献   

20.
A new isolate of Trichoderma harzianum (T-35) was isolated from the rhizosphere of cotton plants from a field infested with Fusarium. Under glasshouse conditions, the antagonist was applied to soil growing in a bran/peat mixture (1:1, v/v) or as a conidial suspension or used as a seed coating. When T. harzianum was tested against Fusarium oxysporum f. sp. vasinfectum, F. oxysporum f. sp. melonis or F. roseum‘Culmorum”, a significant disease reduction, was obtained in cotton, melon and wheat, respectively. Biological control of Fusarium wilt of cotton was achieved when tested at two inoculum levels of the pathogen (2 × 107 and 2 × 108 microconidia/kg soil), decreasing the Fusarium spp. soil population. The long term effect of T. harzianum on Fusarium wilt of cotton was studied using successive plantings. The antagonist persisted in soil throughout three consecutive plantings, reducing the Fusarium, wilt incidence in each growth cycle. At the first planting the largest amount of preparation was found superior, whereas at the third planting, no significant difference could be observed between the four rates of Trichoderma preparation. T. harzianum (T-35) controlled Fusarium wilt in cotton and muskmelon when applied in both naturally or artificially infested alluvial vertisol and sandy-loam soils, respectively. Soil or seed treatments with the antagonist provided a similar disease control of F. roseum‘Culmorum’ and of F. oxysporum f. sp. melonis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号