首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Embryonic stem cells (ESCs) possess an intrinsic self-renewal ability and can differentiate into numerous types of functional tissue cells; however, whether ESCs can differentiate toward the odontogenic lineage is still unknown. In this study, we developed an efficient culture strategy to induce the differentiation of murine ESCs (mESCs) into dental epithelial cells. By culturing mESCs in ameloblasts serum-free conditioned medium (ASF-CM), we could induce their differentiation toward dental epithelial cell lineages; however, similar experiments with the tooth germ cell-conditioned medium (TGC-CM) did not yield effective results. After culturing the cells for 14 days in the differentiation-inducing media, the expression of ameloblast-specific proteins such as cytokeratin (CK)14, ameloblastin (AMBN), and amelogenin (AMGN) was markedly higher in mESCs obtained with embryoid body (EB) formation than in mESCs obtained without EB formation. We observed that immunocompromised mice implanted with induced murine EBs (mEBs) showed tissue regenerative capacity and produced odontogenic epithelial-like structures, whereas those implanted with mSCE monolayer cells mainly formed connective tissues. Thus, for the first time, we report that ASF-CM provides a suitable microenvironment for inducing mESC differentiation along the odontogenic epithelial cell lineage. This result has important implications for tooth tissue engineering.  相似文献   

3.
胚胎干细胞向造血细胞分化研究   总被引:2,自引:0,他引:2  
刘革修  张洹 《生命科学》2003,15(1):21-25
胚胎干(embryonic stem,ES)细胞是来源于囊胚的内细胞团(inner cell mass,ICM),具有发育的全能性或多能性,能嵌合到早期胚胎,在体内可以参与各种组织发育甚至包括生殖细胞;在体外分化培养条件下,可以顺序分化出各种组织细胞,与体内完整胚胎发育过程相符合,而且可以通过调节ES细胞某些基因的表达而调节其分化。因此,ES细胞是研究哺乳动物早期胚胎发育、细胞分化及其关键基因鉴定的理想模型。另外,胚胎生殖脊(embryonic germ,EG)细胞系也具有同样的生物学特性,它是由早期胚胎的原始生殖脊(primordial germ,PG)细胞建株而来。最近研究显示:ES细胞在体外不但可以分化为所有造血细胞系,而且还可以分化为具有长期增殖能力的造血干细胞。作者就胚胎干细胞向造血细胞和造血干细胞分化及其诱导因子和调控基因的表达作一综述。  相似文献   

4.
The carbohydrates present on the surface of differentiated human embryonic stem cells (hESCs) are not yet well established. Here, we have employed a panel of lectins and several anti-carbohydrate antibodies to determine the carbohydrates that are present at day 12 of hESC differentiation as embryoid bodies (EBs). On the basis of staining with fluorescein-labeled lectins, we have determined the presence of both terminal and internally linked alpha-d-mannopyranosyl groups, poly-N-acetyllactosaminyl chains, both alpha2,3- and alpha2,6-linked N-acetylneuraminic acid (Neu5Ac), alpha1,6-linked l-fucosyl, and beta-D-galactosyl groups, and more specifically, the T, Tn, and sialyl-Tn antigens. However, no alpha1,2-linked l-fucosyl, terminal nonreducing alpha-D-galactosyl, N-acetyl-beta-D-glucosaminyl, nor N-acetyl-alpha-D-galactosaminyl groups were found by this approach. We also established the presence of Neu5Acalpha2,3/2,6-Galbeta1,4 GlcNAc-terminated chains on the surfaces of 12-day-old EBs, as indicated by the great enhancement of staining by Erythrina cristagalli agglutinin (ECA) after treatment with neuraminidase. In each case, inhibition of binding by a haptenic sugar or treatment with neuraminidase was used to eliminate the possibility of nonspecific binding of the lectins. A comparison with undifferentiated cell staining revealed an increase in alpha2,3-linked Neu5Ac as well as a change to exclusively alpha1,6-linked l-fucose upon differentiation.  相似文献   

5.
Smooth muscle cell (SMC) plays critical roles in many human diseases, an in vitro system that recapitulates human SMC differentiation would be invaluable for exploring molecular mechanisms leading to the human diseases. We report a directed and highly efficient SMC differentiation system by treating the monolayer-cultivated human embryonic stem cells (hESCs) with all-trans retinoid acid (atRA). When the hESCs were cultivated in differentiation medium containing 10microM RA, more than 93% of the cells expressed SMC-marker genes along with the steadily accumulation of such SMC-specific proteins as SM alpha-actin and SM-MHC. The fully differentiated SMCs were stable in phenotype and capable of contraction. This inducible and highly efficient in vitro human SMC system could be an important resource to study the mechanisms of SMC phenotype determination in human.  相似文献   

6.
7.
Human embryonic stem cells (hESCs) represent an important resource for novel cell-based regenerative medical therapies. hESCs are known to differentiate into mature cells of defined lineages through the formation of embryoid bodies (EBs) which are amenable to suspension culture for several weeks. However, EBs derived from hESCs in standard static cultures are typically non-homogeneous, leading to inefficient cellular development. Here, we systematically compare the formation, growth, and differentiation capabilities of hESC-derived EBs in stirred and static suspension cultures. A 15-fold expansion in total number of EB-derived cells cultured for 21 days in a stirred flask was observed, compared to a fourfold expansion in static (non-stirred) cultures. Additionally, stirred vessel mediated cultures have a more homogeneous EB morphology and size. Importantly, the EBs cultivated in spinner flasks retained comparable ability to produce hematopoietic progenitor cells as those grown in static culture. These results demonstrate the decoupling between EB cultivation method and EB-derived cells' ability to form hematopoietic progenitors, and will allow for improved production of scalable quantities of hematopoietic cells or other differentiated cell lineages from hESCs in a controlled environment.  相似文献   

8.
Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells. hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs). The EBs were then cultured in N2 medium containing bFGF in poly-L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2–3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4–5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeIII, GABA, serotonin and synaptophysin. Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS)in vitro.  相似文献   

9.
Embryonic stem cells (ESCs) can differentiate into all somatic cell types, but the development of effective strategies to direct ESC fate is dependent upon defining environmental parameters capable of influencing cell phenotype. ESCs are commonly differentiated via cell aggregates referred to as embryoid bodies (EBs), but current culture methods, such as hanging drop and static suspension, yield relatively few or heterogeneous populations of EBs. Alternatively, rotary orbital suspension culture enhances EB formation efficiency, cell yield, and homogeneity without adversely affecting differentiation. Thus, the objective of this study was to systematically examine the effects of hydrodynamic conditions created by rotary orbital shaking on EB formation, structure, and differentiation. Mouse ESCs introduced to suspension culture at a range of rotary orbital speeds (20–60 rpm) exhibited variable EB formation sizes and yields due to differences in the kinetics of cell aggregation. Computational fluid dynamic analyses indicated that rotary orbital shaking generated relatively uniform and mild shear stresses (≤2.5 dyn/cm2) within the regions EBs occupied in culture dishes, at each of the orbital speeds examined. The hydrodynamic conditions modulated EB structure, indicated by differences in the cellular organization and morphology of the spheroids. Compared to static culture, exposure to hydrodynamic conditions significantly altered the gene expression profile of EBs. Moreover, varying rotary orbital speeds differentially modulated the kinetic profile of gene expression and relative percentages of differentiated cell types. Overall, this study demonstrates that manipulation of hydrodynamic environments modulates ESC differentiation, thus providing a novel, scalable approach to integrate into the development of directed stem cell differentiation strategies. Biotechnol. Bioeng. 2010; 105: 611–626. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Neural precursors derived from human embryonic stem cells   总被引:1,自引:1,他引:1  
Before the successful isolation of human embryonic stem (hES) cells, many investigations had shown that mouse embryonic stem (mES) cells can be induced to differentiate into neural precursors which could be purified and differentiated to mature dopamine, motor, serotonin, GABA neurons, and oligodendrocytes and astrocytes in vitro[1―3]. mES cell-derived dopamine neurons have been shown capable of integrating into host brains after transplanting to the rodents of Park-inson’s disease model …  相似文献   

11.
人胚胎干细胞(human embryonic stem cells,hESCs)由囊胚期胚胎内细胞团分离培养获得,具有保持未分化状态的无限增殖能力。hESCs具有多向分化潜能,在体内和体外均可分化形成所有三个胚层(外胚层、中胚层、内胚层)的衍生物。hESCs一般在鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)饲养层上培养和扩增。为了优化培养条件,目前人们已发展了多种人类细胞饲养层和无饲养层、非条件培养基体系。hESCs可以在体外定向诱导分化为多种细胞类型,为揭示人胚早期发育机制和发展多种疾病的细胞移植治疗奠定了基础。hESCs可以在体外进行遗传修饰,将有助于揭示特定基因在发育过程中的调控和功能。对hESCs的深入研究将极大地推动医学和生命科学的进展,并将最终应用于临床,造福人类。  相似文献   

12.
13.
Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the interrogation of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special emphasis on the cellular signaling involved in these processes. The derivation process affects the yield and homogeneity of the NP cells. Then when exposed to the correct environmental signaling cues, NP cells can follow a unique and robust temporal cell differentiation process forming numerous phenotypes.  相似文献   

14.
15.
Pluripotent human embryonic stem cell (hESC) lines are a promising model system in developmental and tissue regeneration research. Differentiation of hESCs towards the three germ layers and finally tissue specific cell types is often performed through the formation of embryoid bodies (EBs) in suspension or hanging droplet culture systems. However, these systems are inefficient regarding embryoid body (EB) formation, structural support to the EB and long term differentiation capacity. The present study investigates if agarose, as a semi solid matrix, can facilitate EB formation and support differentiation of hESC lines. The results showed that agarose culture is able to enhance EB formation efficiency with 10% and increase EB growth by 300%. The agarose culture system was able to maintain expression of the three germ layers over 8 weeks of culture. All of the four hESC lines tested developed EBs in the agarose system although with a histological heterogeneity between cell lines as well as within cell lines. In conclusion, a 3-D agarose culture of spherical hESC colonies improves EB formation and growth in a cost effective, stable and non-laborious technique.  相似文献   

16.
17.
Skeletal myogenesis by human embryonic stem cells   总被引:4,自引:0,他引:4  
We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types.  相似文献   

18.
The embryonic stem cell line, S25, is a genetically modified line that allows lineage selection of neural cells (M. Li, L. Lovell-Badge, A. Smith (1998) Current Biology 8: 971–974). Here, the growth parameters of this cell line were analysed. Serial passaging in adherent conditions enabled these cells to grow rapidly (average specific growth rates of 0.035 h–1) and generate high viable cell densities (above 90%). The aggregation of the S25 cells into embryoid bodies (EBs) was also studied, indicating limited cell growth (maximum cell densities of 2.7×105 cells ml–1) and a high variability of aggregate size (70–400 m after 8 d). Enzymatic dissociation of EBs with 1% (v/v) trypsin gave highest cell viability (91%) and density (1.4×104 cells ml–1) and the cells thus obtained are able to differentiate into neurons.  相似文献   

19.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immuno-histochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号