首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of nitric oxide and nitrogen dioxide on bacterial growth.   总被引:5,自引:2,他引:5       下载免费PDF全文
The effects of low concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) on actively dividing cultures of Staphylococcus aureus, Micrococcus luteus, Micrococcus roseus, Serratia marcescens, Bacillus subtilis, Bacillus circulans, Bacillus megaterium, and Bacillus cereus were studied. Fresh cultures of each organism were incubated for 24 h at 25 degrees C on both nutrient agar and mineral salts glucose agar plates under atmospheres containing various low concentrations of NO in air (0 to 1.9 ppm [0 to 2.0 micrograms/g of air]), NO2 in air (0 to 5.5 ppm [0 to 8.8 micrograms/g of air]), or NO and NO2 in air. Bacteria grown under air only were used as controls. After incubation, the colonies that developed on the plates were counted. None of the bacteria tested was affected by NO or NO2 at the indicated concentrations while growing on nutrient agar. Serratia marcescens, B. circulans, B. subtilis, B. megaterium, and B. cereus grown on mineral salts glucose agar were not significantly affected by NO or NO2. Low concentrations (0 to 1.9 ppm) of NO were bacteriostatic to log-phase cultures of M. roseus, M. luteus, and Staphylococcus aureus grown on mineral salts glucose agar. Bacteriostatic activity over a 24-h interval was maximal at an initial NO concentration of 1 ppm. Appreciable amounts of NO2 were produced in 24 h at initial NO concentrations greater than 1 ppm. These results suggest that NO2 may reduce the bacteriostatic activity of NO. Low concentrations (0 to 5.5 ppm) of NO2 in air did not affect any of the bacteria tested. At these low concentrations, NO affected bacterial growth, although NO2, NO2-, and NO3- did not. In addition, it was determined that the bacteriostatic activity observed in this study was not due to an increase in the acidity of the medium.  相似文献   

2.
Effects of nitric oxide and nitrogen dioxide on bacterial growth   总被引:3,自引:0,他引:3  
The effects of low concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) on actively dividing cultures of Staphylococcus aureus, Micrococcus luteus, Micrococcus roseus, Serratia marcescens, Bacillus subtilis, Bacillus circulans, Bacillus megaterium, and Bacillus cereus were studied. Fresh cultures of each organism were incubated for 24 h at 25 degrees C on both nutrient agar and mineral salts glucose agar plates under atmospheres containing various low concentrations of NO in air (0 to 1.9 ppm [0 to 2.0 micrograms/g of air]), NO2 in air (0 to 5.5 ppm [0 to 8.8 micrograms/g of air]), or NO and NO2 in air. Bacteria grown under air only were used as controls. After incubation, the colonies that developed on the plates were counted. None of the bacteria tested was affected by NO or NO2 at the indicated concentrations while growing on nutrient agar. Serratia marcescens, B. circulans, B. subtilis, B. megaterium, and B. cereus grown on mineral salts glucose agar were not significantly affected by NO or NO2. Low concentrations (0 to 1.9 ppm) of NO were bacteriostatic to log-phase cultures of M. roseus, M. luteus, and Staphylococcus aureus grown on mineral salts glucose agar. Bacteriostatic activity over a 24-h interval was maximal at an initial NO concentration of 1 ppm. Appreciable amounts of NO2 were produced in 24 h at initial NO concentrations greater than 1 ppm. These results suggest that NO2 may reduce the bacteriostatic activity of NO. Low concentrations (0 to 5.5 ppm) of NO2 in air did not affect any of the bacteria tested. At these low concentrations, NO affected bacterial growth, although NO2, NO2-, and NO3- did not. In addition, it was determined that the bacteriostatic activity observed in this study was not due to an increase in the acidity of the medium.  相似文献   

3.
The homogeneous low molecular weight chitosans (LMWC) of molecular weight 9.5-8.5 kDa, obtained by pronase catalyzed non-specific depolymerization (at pH 3.5, 37 degrees C) of chitosan showed lyses of Bacillus cereus and Escherichia coli more efficiently (100%) than native chitosan (<50%). IR and (1)H-NMR data showed decrease in the degree of acetylation (14-19%) in LMWC compared to native chitosan ( approximately 26%). Minimum inhibitory concentration of LMWC towards 10(6) CFU ml(-1) of B. cereus was 0.01% (w/v) compared to 0.03% for 10(4) CFU ml(-1) of E. coli. SEM revealed pore formation as well as permeabilization of the bacterial cells, as also evidenced by increased carbohydrate and protein contents as well as the cytoplasmic enzymes in the cell-free supernatants. N-terminal sequence analyses of the released proteins revealed them to be cytoplasmic/membrane proteins. Upon GLC, the supernatant showed characteristic fatty acid profiles in E. coli, thus subscribing to detachment of lipopolysaccharides into the medium, whereas that of B. cereus indicated release of surface lipids. The mechanism for the observed bactericidal activity of LMWC towards both Gram-positive and Gram-negative bacteria has been discussed.  相似文献   

4.
Bacillus cereus-Induced Fluid Accumulation in Rabbit Ileal Loops   总被引:18,自引:8,他引:10  
The usefulness of the ligated rabbit ileal loop as an experimental model of Bacillus cereus food poisoning was investigated. Positive responses, as measured by fluid accumulation in the loop, were obtained from 19 of 22 strains of B. cereus. Four of six strains of B. thuringiensis also elicited fluid accumulation, but eight strains of other Bacillus spp. failed to evoke a response. The growth medium employed markedly affected the ability of a given strain of B. cereus to provoke a response. Brain heart infusion broth (BHI) (Difco) proved to be best for this purpose. Loop fluid-inducing activity was produced by exponentially growing cells and was present in cell-free culture filtrates and associated with washed vegetative cells. Intraluminal growth of B. cereus did not elicit fluid accumulation. Cultures grown at temperatures in the range of 18 C to 43 C were loop active. When BHI cultures of selected loop positive strains were injected intraluminally into the normal ileum of rabbits, they failed to elicit diarrhea.  相似文献   

5.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.  相似文献   

6.
Low molecular weight chitosans (LMWC) of different molecular weight (4.1-5.6 kDa) were obtained by the depolymerization of chitosan using papain (from Carica papaya latex, EC. 3.4.22.2) at optimum conditions of pH 3.5 and 37 degrees C for 1-5 h. Scanning electron microscopy (SEM) showed approximately 15-fold decrease in the particle size after depolymerization. Decrease in the molecular weight was associated with decrease in the degree of acetylation (DA) as evidenced by circular dichroism (CD), FT-IR and solid-state CP-MAS 13C-NMR data. X-ray diffraction pattern revealed slight decrease in the crystallinity index (CrI) whereas the 13C-NMR data showed molecular inhomogeneity. LMWC showed lytic effect towards Bacillus cereus and Escherichia coli more efficiently than native chitosan. The growth inhibitory effect was maximal towards B. cereus, with minimum inhibitory concentration (MIC) of 0.01% (w/v).  相似文献   

7.
In the present investigation, a microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated and identified as Bacillus subtilis strain LFS3 by 16S rDNA sequence analysis. The carboxymethylcellulase (CMCase) enzyme produced by the B. subtilis strain LFS3 was purified by (NH?)?SO? precipitation, ion exchange and gel filtration chromatography, with an overall recovery of 15 %. Native-PAGE analysis of purified CMCase revealed the molecular weight of enzyme to be about 185 kDa. The activity profile of CMCase enzyme showed the optimum activity at temperature 60 °C and pH 4.0, respectively. The enzyme activity was induced by Na?, Mg2?, NH??, and EDTA, whereas strongly inhibited by Hg2? and Fe3?. The purified enzyme hydrolyzed CMC, filter paper, and xylan, but not p-nitrophenyl β-D-glucopyranoside and cellulose. Kinetic analysis of purified enzyme showed the K(m) value of 2.2 mg/ml. Thus, acidophilic as well as thermophilic nature makes this cellulase a suitable candidate for current mainstream biomass conversion into fuel and other industrial processes.  相似文献   

8.
A Bacillus strain producing a bacteriocin-like substance was characterized by biochemical profiling and 16S rDNA sequencing. Phylogenetic analysis indicated that the strain has high sequence similarity with Bacillus amyloliquefaciens. The antimicrobial substance was inhibitory to pathogenic and food-spoilage bacteria, such as Listeria monocytogenes, Bacillus cereus, Serratia marcescens, and Pasteurella haemolytica. It was stable over a wide temperature range, but lost activity when the temperature reached 121 degrees C/15 min. Maximum activity was observed at acidic and neutral pH values, but not at alkaline pH. The antimicrobial substance was sensitive to the proteolytic action of trypsin, papain, proteinase K, and pronase E. Except for iturins, other antimicrobial peptides have not been described for B. amyloliquefaciens. The identification of a bacteriocin-like inhibitory substance active against L. monocytogenes addresses an important aspect of food protection.  相似文献   

9.
AIM: To determine the autolytic phenotype of five species in the Bacillus cereus group. METHODS AND RESULTS: The autolytic rate of 96 strains belonging to five species in the B. cereus group was examined under starvation conditions at pH 6, 6.5 and 8.5 in different buffers. The autolytic rate was strain-dependent with a wide variability at pH 6, but higher and more uniform at pH 6.5. At pH 8.5, and respect to the extent of autolysis at pH 6.5, it was relatively low for most of the strains with the lowest values between 13 and 52% in Bacillus mycoides and Bacillus pseudomycoides. Peptidoglycan hydrolase patterns evaluated by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis using cells of Bacillus thuringiensis ssp. tolworthi HD125 as an indicator, revealed complex profiles with lytic bands of about 90, 63, 46, 41, 38, 32, 28 and 25 kDa in B. cereus, B. thuringiensis and Bacillus weihenstephanensis. Bacillus mycoides and B. pseudomycoides had simpler profiles with lytic bands of 63, 46 and 38 kDa. Changes in the autolytic pattern were observed for cells harvested at the stationary phase of growth (72 h) showing an increase in the intensity of the 25 kDa band in the case of B. cereus, B. thuringiensis and B. weihenstephanensis, while no changes were observed for B. mycoides. Using Micrococcus lysodeicticus and Listeria monocytogenes as indicators lytic activity was retained by proteins of 63, 46, 38, 32 and 25 kDa and a new one of about 20 kDa in B. mycoides. Growth in the different media did not affect the autolytic pattern. NaCl abolished the activity of all the peptidoglycan hydrolases except for those of B. mycoides and B. weihenstephanensis. Lytic activity was retained in the presence of MgCl(2), MnCl(2) and EDTA and increased at basic pH. CONCLUSIONS: Bacillus cereus/B. thuringiensis/B. weihenstephanensis showed a high extent of autolysis around neutral pH, even though they presented relatively complex autolysin profiles at alkaline pH. Bacillus mycoides/B. pseudomycoides had a higher extent of autolysis at acidic pH and a simpler autolysin pattern. SIGNIFICANCE AND IMPACT OF THE STUDY: Information on the autolytic phenotype expand the phenotypic characterization of the different species in the B. cereus group.  相似文献   

10.
Abstract We developed an improved HEp-2 cell assay method for the detection of Bacillus cereus toxin, which affects the proliferation of HEp-2 cells. The cytostatic toxin was stable upon exposure to heat, pH 2, pH 11 and trypsin, which suggests it is an emetic. Using the HEp-2 cell assay, we examined the distribution and contamination of B. cereus strains that produced an emetic toxin in various foods. Although there were 228 enterotoxin producers among 310 B. cereus strains obtained from foods, 16 of them produced the cytostatic type (emetic toxin). All of the strains that produced the cytostatic toxin were of the H.1 serotype.  相似文献   

11.
Mortality in adult tsetse, Glossina morsitans morsitans, caused by Pseudomonas aeruginosa, Serratia marcescens, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis H-14, B. thuringiensis 1, B. thuringiensis 5, B. thuringiensis var. insraelensis, and Providentia rettgeri was determined. When bacteria were smeared on rabbit skin and tsetse allowed to feed only once on the contaminated area, mortality 8 days postingestion was significantly higher (P less than 0.01) in tsetse fed on P. aeruginosa, S. marcescens, B. thuringiensis 1, and P. rettgeri and increased when tsetse were allowed to feed for the second time on the contaminated skin. With this smear technique, however, mortalities were generally not remarkable. In artificial membrane feeding experiments using low concentrations of bacteria (-10(6)/ml of blood), the B. thuringiensis strains caused low mortality, except B. thuringiensis H-14, which caused 59% mortality. However, at this concentration, P. aeruginosa, S. marcescens, B. cereus, and P. rettgeri caused highly significant (P less than 0.01) mortality (64-96%). When higher concentrations of bacteria (10(7)/ml) were used, all the bacteria tested, except B. sphaericus, caused high mortality ranging from 70 to 98%. Thus, mortality depended on the species of bacteria, the dose ingested, and time postingestion.  相似文献   

12.
Aims:  The present study focused on cloning and expression of chiA gene from a highly chitinolytic local isolate of Serratia marcescens in an anti-Coleopteran Bacillus thuringiensis and comparison of the characteristics of the native and recombinant ChiAs.
Methods and Results:  chiA gene from Ser . marcescens was cloned, sequenced and compared with the previously cloned chiA genes. chiA gene was PCR cloned and expressed in anti-Coleopteran B. thuringiensis strain 3023 as verified by Western blot analysis. Specific ChiA activity of the recombinant B. thuringiensis (strain 3023-SCHI) reached its highest level at 21st hour of growth (16·93 U mg−1), which was 5·2- and 1·3-fold higher than that of its parental strain and Ser . marcescens , respectively. Temperature and pH effects on native and recombinant ChiAs were next determined. The recombinant plasmid was quite stable over 240 generations.
Conclusions:  Serratia marcescens ChiA was heterologously expressed in an anti-Coleopteran B. thuringiensis at levels even higher than that produced by the source organism.
Significance and Impact of the Study:  Bacillus thuringiensis 3023-SCHI co-expressing anti-Coleopteran Cry3Aa protein and Ser . marcescens chitinase offers a viable alternative to the use of chitinolytic microbes/enzymes in combination with entamopathogenic bacteria for an increased potency because of synergistic interaction between them.  相似文献   

13.
AIMS: This study identified and studied the response of five Bacillus strains, isolated from alkaline cleaning in place (CIP) solutions, to alkaline conditions. METHODS AND RESULTS: Isolates were identified as B. cereus by 16S rDNA sequencing. External and internal cell pH and buffering capacity data of a representative strain, Bacillus DL5, were compared to B. cereus ATCC 10702. Results indicated that a buffering system was induced when the pH of the growth medium increased to above pH 10, which was effective up to pH 12 and presumably cell wall associated. Volume measurements and confocal scanning laser microscope images of Bacillus DL5 cells showed that cells exhibited more pronounced stress symptoms when exposed to pH 10 than at pHs above 10. Long-term exposure of Bacillus DL5 to pH 10 or 10.5 indicated that cells grew in planktonic form and formed biofilms at both pHs. CONCLUSIONS: Bacillus DL5 was a neutrophile with a growth pH range similar to B. cereus ATCC 10702, but tolerated alkaline pH. This may be a general trait of the B. cereus species rather than a specific phenomenon of isolates from alkaline ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY: Other neutrophilic B. cereus isolates may exhibit similar responses to alkaline conditions as the isolates studied here. These results may have important implications for dairy manufacturers.  相似文献   

14.
Lysozyme-like activity has been demonstrated in both cell-free haemolymph and, more abundantly, in haemocyte-lysate supernatants of Blaberus discoidalis. This activity was non-inducible, but heat-stable, with a maximum activity at pH 6.2. When B. cereus was pre-incubated in a concentration of chicken egg-white lysozyme equivalent to the concentration of lysozyme-like activity in cell-free haemolymph, the phagocytosis of B. cereus opsonized with GlcNAc-specific lectins, i.e. BDL2, WGA and HPA, was significantly reduced by up to 50%, while phagocytosis of B. cereus opsonized with mannose-specific lectins, such as BDL1 and Con A, was significantly increased. Pre-incubation of B. cereus in a higher concentration of lysozyme resulted in a smaller, shorter lived increase in the phagocytic rate of bacteria opsonized with these mannose-specific lectins. The action of lysozyme on the peptidoglycan in the cell wall of B. cereus probably resulted in a reduction in the number of binding sites for the GlcNAc-specific lectins, and, therefore, reduced the phagocytic rate of BDL2, HPA and WGA-opsonized B. cereus. Concomitantly, the breakdown of peptidoglycan probably exposed mannose-containing polysaccharides, previously embedded in the peptidoglycan layer, resulting in an increase in the phagocytic rate of the BDL1- and Con A-opsonized B. cereus. These results are discussed in relation to the immune-potential of B. discoidalis.  相似文献   

15.
A stereospecific enzyme activity capable of cleaving the amide bond of the synthetic substrate N-benzoyl-D-arginine-p-nitroanilide (D-BAPA) has been found in all aerobic and anaerobic members of the family Bacillaceae tested by us. Cells of nonsporeforming gram-positive or gram-negative bacteria contain a hydrolase activity stereospecific to N-benzoyl-L-arginine-p-nitroanilide. The D-BAPA-hydrolyzing enzymes (D-BAPAases) of mid-logarithmic-phase cells of Bacillus subtilis 168 and B. cereus T were compared. These enzymes had the same molecular weight of approximately 66,000 in gel filtration and the same electrophoretic mobility after electrophoresis on polyacrylamide gels. The D-BAPAases of B. subtilis 168 and B. cereus T differed in the effect of inhibitors on enzymatic activity. While both hydrolases were inhibited by tosyl-L-lysine chloromethyl ketone and tosyl-L-arginine-methyl ester as well as leupeptin, only the D-BAPAase of B. cereus T was inhibited by p-chloromercuribenzene sulfonic acid. The D-BAPAases of B. subtilis and B. cereus T had a Michaelis constant for D-BAPA of 2.9 x 10(-5) M and 1.4 x 10(-4) M, respectively. D-BAPAase is an intracellular enzyme localized in the protoplast (80 to 90% in soluble form in the cytoplasm). The ability to cleave D-BAPA is suggested as an additional chemotaxonomic characteristic of sporeforming bacteria of the genera Bacillus and Clostridium.  相似文献   

16.
Microbial reclamation of shellfish wastes for the production of chitinases   总被引:1,自引:0,他引:1  
Shrimp and crab shell powder (SCSP), prepared by treating shellfish processing waste with boiling and crushing, was used as a substrate for isolating chitinolytic microorganisms. Three potential strains (E1, J1, and J1-1) were isolated and identified as Bacillus cereus, B. alvei, and B. sphaericus, respectively. Three extracellular chitinases (FB1, FB2, and FB3) were purified from the culture supernatants of Bacillus cereus E1, B. alvei J1, and B. sphaericus J1-1, respectively. The molecular weights of FB1, FB2, and FB3 were 71,000, 71,000, and 65,000, respectively, by SDS-PAGE. The pIs for FB1, FB2, and FB3 were 7.1, 7.2, and 7.4, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of FB1 were pH 9, 50 degrees C, pH 7 to 10, and 70 degrees C; those of FB2 were pH 9, 60 degrees C, pH 5 to 9, and 70 degrees C; and those of FB3 were pH 7, 50 degrees C, pH 5 to 9, and 60 degrees C. The activities of all enzymes were strongly inhibited by Hg(2+) and completely inhibited by glutathione, dithiothreitol, and 2-mercaptoethanol.  相似文献   

17.
Diaminopimelate decarboxylase of sporulating bacteria   总被引:6,自引:4,他引:2       下载免费PDF全文
The meso-diaminopimelate (DAP) decarboxylase of Bacillus licheniformis, a pyridoxal phosphate-requiring enzyme, was stabilized in vitro by 0.15 m sodium phosphate buffer (pH 7.0) containing 1 mm 2,3-dimercaptopropan-1-ol, 100 mug of pyridoxal phosphate per ml, and 3 mm DAP. When the meso-DAP concentration was varied, the enzyme in cell-free extracts of B. licheniformis exhibited Michaelis-Menten kinetics. Pyridoxal phosphate was the only pyridoxine derivative which acted as a cofactor. The enzyme was subject to both inhibition and repression by l-lysine. The inhibitory effect of lysine was on the K(m) (meso-DAP). A maximum repression of about 20% was obtained. No significant inhibition or activation was produced by cadaverine, dipicolinic acid, phenylalanine, pyruvate, ethylenediamine-tetraacetate, adenosine triphosphate, adenosine diphosphate, or adenosine monophosphate. When B. licheniformis was grown in an ammonium lactate-glucose-salts medium, an increase in DAP decarboxylase specific activity occurred during cellular growth with a maximal specific activity at the end of the exponential phase. As soon as growth ceased, the specific activity of the enzyme decreased to approximately one-half of the maximal specific activity and remained at this level thereafter. When B. cereus was grown in complex media, there was an increase in DAP decarboxylase specific activity up to the end of the exponential phase. Thereafter, the specific activity decreased to a nondetectable level in 4 hr. Dipicolinic acid synthesis was first detected 15 min later and was essentially complete after an additional 2.5 hr. The significance of the disappearance of DAP decarboxylase in B. cereus was discussed with regard to control of dipicolinic acid and spore mucopeptide biosynthesis.  相似文献   

18.
To facilitate the analysis of genetic determinants carried by large resident plasmids of Bacillus anthracis, a mating system was developed which promotes plasmid transfer among strains of B. anthracis, B. cereus, and B. thuringiensis. Transfer of the selectable tetracycline resistance plasmid pBC16 and other plasmids from B. thuringiensis to B. anthracis and B. cereus recipients occurred during mixed incubation in broth. Two plasmids, pXO11 and pXO12, found in B. thuringiensis were responsible for plasmid mobilization. B. anthracis and B. cereus transcipients inheriting either pXO11 or pXO12 were, in turn, effective donors. Transcipients harboring pXO12 were more efficient donors than those harboring pXO11; transfer frequencies ranged from 10(-4) to 10(-1) and from 10(-8) to 10(-5), respectively. Cell-to-cell contact was necessary for plasmid transfer, and the addition of DNase had no effect. The high frequencies of transfer, along with the fact that cell-free filtrates of donor cultures were ineffective, suggested that transfer was not phage mediated. B. anthracis and B. cereus transcipients which inherited pXO12 also acquired the ability to produce parasporal crystals (Cry+) resembling those produced by B. thuringiensis, indicating that pXO12 carries a gene(s) involved in crystal formation. Transcipients which inherited pXO11 were Cry-. This mating system provides an efficient method for interspecies transfer of a large range of Bacillus plasmids by a conjugation-like process.  相似文献   

19.
An improved broth medium was developed for high growth yields of Bacillus subtilis var. niger NCIB 8649, Bacillus cereus NCIB 9373, and Bacillus stearothermophilus NCIB 8919 and ATCC 7953. Sporulation was abundant (1.1 times 10-8 B. subtilis var. niger and 9.2 times 10-7 B. cereus per ml) at an initial pH of 7.0. Sporulation of both strains of B. stearothermophilus took place (1.9 times 10-7 and 2.4 times 10-7/ml, respectively) in this medium when initial pH values of 7.7 to 8.7 were used.  相似文献   

20.
Carvacrol, a natural plant constituent occurring in oregano and thyme, was investigated for its bactericidal effect towards the food-borne pathogen Bacillus cereus . Carvacrol showed a dose-related growth inhibition of B. cereus . At concentrations of 0·75 mmol l−1 and above, total inhibition of the growth was observed. Below this concentration, carvacrol extended the lag-phase, reduced the specific growth rate and reduced the maximum population density. Incubation for 40 min in the presence of 0·75–3 mmol l−1 carvacrol decreased the number of viable cells of B. cereus exponentially. Spores were found to be approximately 2·3-fold less sensitive to carvacrol than vegetative cells. Bacillus cereus cells showed reduced susceptibility towards carvacrol at pH 7·0 compared with different values between pH 4·5 and 8·5. The culture and exposure temperatures had a significant influence on the survival of vegetative cells. The highest death rate of cells was observed at an exposure temperature of 30 °C. Membrane fluidity was found to be an important factor influencing the bactericidal activity of carvacrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号