首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymerase chain reaction (PCR) is largely used in molecular biology for increasing the copy number of a specific DNA fragment. The succession of 20 replication cycles makes it possible to multiply the quantity of the fragment of interest by a factor of 1 million. The PCR technique has revolutionized genomics research. Several quantification methodologies are available to determine the DNA replication efficiency of the reaction which is the probability of replication of a DNA molecule at a replication cycle. We elaborate a quantification procedure based on the exponential phase and the early saturation phase of PCR. The reaction efficiency is supposed to be constant in the exponential phase, and decreasing in the saturation phase. We propose to model the PCR amplification process by a branching process which starts as a Galton-Watson branching process followed by a size-dependent process. Using this stochastic modelling and the conditional least-squares estimation method, we infer the reaction efficiency from a single PCR trajectory.  相似文献   

2.
3.
The reaction force F(R) and the position-dependent reaction force constant κF(R) are defined by F(R)=-∂V(R)/∂R and κ(R)=∂2V(R)/∂R2, where V(R) is the potential energy of a reacting system along a coordinate R. The minima and maxima of F(R) provide a natural division of the process into several regions. Those in which F(R) is increasing are where the most dramatic changes in electronic properties take place, and where the system goes from activated reactants (at the force minimum) to activated products (at the force maximum). κ(R) is negative throughout such a region. We summarize evidence supporting the idea that a reaction should be viewed as going through a transition region rather than through a single point transition state. A similar conclusion has come out of transition state spectroscopy. We describe this region as a chemically-active, or electronically-intensive, stage of the reaction, while the ones that precede and follow it are structurally-intensive. Finally, we briefly address the time dependence of the reaction force and the reaction force constant.  相似文献   

4.
A dihydroxybenzenes(DHB)-driven Fenton reaction was found to be more efficient than a simple Fenton reaction based on OH radical and activated species production. The reason for this enhanced reactivity by [Fe DHB] complexes is not well understood, but results suggest that it may be explained by the formation of oxidation species different from those formed during the classic Fenton reactions. In previous work, greater concentrations, and more sustained production of OH over time were observed in DHB driven Fenton reactions versus neat Fenton and Fenton-like reactions. In this work, chemiluminescence (CL) was monitored, and compared to OH production kinetics. The CL of the DHB-driven Fenton reaction was shorter than that for sustained production of OH. CL appears to have been caused by excited Fe(IV) species stabilized by the DHB ligands initially formed in the reaction. Formation of this species would have to have occurred by the reaction between OH and Fe(III) in a DHB complex.  相似文献   

5.
6.
7.
Gut reaction     
A. M. Todkill 《CMAJ》1999,160(6):872
  相似文献   

8.
Gut reaction     
《Nature medicine》2000,6(2):130
  相似文献   

9.
10.
11.
12.
A technique has been developed for characterizing the in vivo behavior of key enzymes from intermediate measurements. The technique is based on the identification of characteristic reaction paths, and it depends on the time scale separation characteristics of the systems. It is shown that useful information can be obtained from the phase plots of properly selected intermediate pairs or combinations which typically show process insensitive algebraic relations approached on time scales short compared to those of most practical interest. These characteristic reaction paths provide useful global measures of enzyme activity. The mathematical basis of reaction path analysis is investigated using linear transformation techniques. General theorems are developed predicting the existence of characteristic reaction paths as asymptotic limits whenever there is effective time scale separation. These limits are reached when fast reactions are relaxed, and available evidence suggests that these conditions will occur for the majority of reaction networks.  相似文献   

13.
14.
15.
16.
An analysis of sigmoid-shaped progress curves in the reaction between Electric Eel acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7, AChE) and its substrate acetylthiocholine in low concentrations at pH 7 is presented. In order to be able to explain an initial apparent inhibition of the enzyme-substrate reaction, the rate of detection reaction had to be taken into account. The theoretical curves obtained by the fitting of differential equations for the reaction mechanism to the data of six progress curves simultaneously, exactly reproduce the course of the experimental curves. The measurements performed with various concentrations of detection reagent confirm the proposed cause of sigmoidity.  相似文献   

17.
1.
1. The maximum yield per flash in flashing light of short flash duration (? 0.01 sec.) is the same for photosynthesis and for the Hill reaction in Chlorella cells (about 1 oxygen molecule/2000 chlorophyll molecules/flash). This supports the previously suggested hypothesis that the rate-limiting enzymatic reaction is the same in both processes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号