首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed and tested a method, based on conduction heat transfer analysis, to infer airway mucosal temperatures from airstream temperature-time profiles during breath-hold maneuvers. The method assumes that radial conduction of heat from the mucosal wall to inspired air dominates heat exchange during a breath-hold maneuver and uses a simplified conservation of energy analysis to extrapolate wall temperatures from air temperature vs. time profiles. Validation studies were performed by simultaneously measuring air and wall temperatures by use of a retractable basket probe in the upper airways of human volunteers and intrathoracic airways of paralyzed intubated dogs during breath holding. In both protocols, a good correlation was demonstrated between directly measured wall temperatures and those calculated from adjacent airstream temperature vs. time profiles during a breath hold. We then calculated intrathoracic bronchial wall temperatures from breath-hold airstream temperature-time profiles recorded in normal human subjects after cold air hyperpnea at 30 and 80 l/min. The calculations show airway wall temperatures in the upper intrathoracic airways that are below core body temperature during hyperpnea of frigid air and upper thoracic airways that are cooler than more peripheral airways. The data suggest that the magnitude of local intrathoracic heat/water flux is not represented by heat/water loss measurements at the airway opening. Both the magnitude and locus of heat transport during cold gas hyperventilation vary with changes in inspired gas temperature and minute ventilation; both may be important determinants of airway responses.  相似文献   

2.
Excessive heat and water losses from the airways are stimuli to asthma. To study heat and water vapor transport in the human respiratory tract, a time-dependent model, based on a single differential equation with an analytical solution, was developed that could predict the intra-airway temperatures and water vapor contents. The key feature is the dependence of the temperature and water vapor along the respiratory tract as a function of the air residence time at each location. The model assumes disturbed laminar flow leading to enhanced transport mechanisms and wall temperature profiles modeled according to experimental data (E. R. McFadden, Jr., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Soloway. J. Appl. Physiol. 58: 564-570, 1985). It predicts that 1) the air equilibrates with the wall before it reaches body conditions (37 degrees C, 99.5% relative humidity); 2) conditioning of the inspired air involves several generations, with the number depending on the respiratory conditions; and 3) the walls of the upper airways are unsaturated, although it is difficult to judge at this state the depth of the respiratory tract affected.  相似文献   

3.
4.
Whether increasing respiratory heat loss (RHL) during exercise under heat stress can contain elevation of rectal temperature (Tre) was examined. Eight men cycled twice at 45-50% their maximum work rate until exhaustion at ambient temperature and relative humidity of 38 degrees C and 90-95%, respectively. They inspired either cold (3.6 degrees C) or ambient air in random sequence. When subjects breathed cold air during 23 min of exercise, a ninefold increase in RHL was observed vs. similar work during hot air inhalation (32.81 vs. 3.46 W). Respiratory frequency (f) and rate of rise in Tre decreased significantly (P less than or equal to 0.004 and P less than or equal to 0.002, respectively). The rise in skin temperature in each inhalant gas condition was accompanied by a parallel almost equal increase in core temperature above basal (delta Tre) for equivalent gains in skin temperature. The increase in tidal volume and decreased f in the cold condition allowed more effective physical conditioning of cold inspirate gas in the upper airways and aided RHL. Cold air inhalation also produced a significant (P less than or equal to 0.05) decrease in heart rate vs. hot air inhalation in the final stages of exercise. Insignificant changes in O2 consumption and total body fluid loss were found. These data show that cold air inhalation during exercise diminishes elevation of Tre and suggest that both the intensity and duration of work can thus be extended. The importance of the physical exchange of heat energy and any physiological mechanisms induced by the cold inspirate in producing the changes is undetermined.  相似文献   

5.
 The rates of convection and evaporation at the interface between the human body and the surrounding air are expressed by the parameters convective heat transfer coefficient h c, in W m–2°C–1 and evaporative heat transfer coefficient h e, W m–2 hPa–1. These parameters are determined by heat transfer equations, which also depend on the velocity of the airstream around the body, that is still air (free convection) and moving air (forced convection). The altitude dependence of the parameters is represented as an exponential function of the atmospheric pressure p: h cp n and h ep 1–n, where n is the exponent in the heat transfer equation. The numerical values of n are related to airspeed: n=0.5 for free convection, n=0.618 when airspeed is below 2.0 ms–1 and n=0.805 when airspeed is above 2.0 ms–1. This study considers the coefficients h c and h e with respect to the similarity of the two processes, convection and evaporation. A framework to explain the basis of established relationships is proposed. It is shown that the thickness of the boundary layer over the body surface increases with altitude. As a medium of the transfer processes, the boundary layer is assumed to be a layer of still air with fixed insulation which causes a reduction in the intensity of heat and mass flux propagating from the human body surface to its surroundings. The degree of reduction is more significant at a higher altitude because of the greater thickness of the boundary layer there. The rate of convective and evaporative heat losses from the human body surface at various altitudes in otherwise identical conditions depends on the following factors: (1) during convection – the thickness of the boundary layer, plus the decrease in air density, (2) during evaporation (mass transfer) – the thickness of the boundary layer, plus the increase with altitude in the diffusion coefficient of water vapour in the air. The warming rate of the air volume due to convection and evaporation is also considered. Expressions for the calculation of altitude dependences h c (p) and h e (p) are suggested. Received: 23 June 1998 / Accepted: 10 February 1999  相似文献   

6.
Finite difference analysis of respiratory heat transfer   总被引:2,自引:0,他引:2  
A numerical computer model of heat and water transfer within the tracheobronchial tree of humans was developed based on an integral formulation of the first law of thermodynamics. Simulation results were compared with directly measured intraluminal airway temperature profiles previously obtained in normal human subjects, and a good correlation was demonstrated. The model was used to study aspects of regional pulmonary heat transfer and to predict the outcomes of experiments not yet performed. The results of these simulations show that a decrease in inspired air temperature and water content at fixed minute ventilation produces a proportionately larger increase in heat loss from extrathoracic airways relative to intrathoracic, whereas an increase in minute ventilation at fixed inspired air conditions produces the opposite pattern, with cold dry air penetrating further into the lung, and that changes in breathing pattern (tidal volume and frequency) at fixed minute ventilation and fixed inspiratory-to-expiratory (I/E) ratio do not affect local air temperature profiles and heat loss, whereas changes in I/E ratio at fixed minute ventilation do cause a significant change.  相似文献   

7.
We have previously observed that although atropine does not alter the magnitude of the response to exercise while breathing cold air, it does cause the predominant site of obstruction to move into the lung periphery. To determine if this effect was due to changes in the conditioning of inspired air, we measured respiratory heat loss (RHL) and retrotracheal (Trt) and retrocardiac esophageal temperature in eight asthmatics while they performed eucapnic hyperventilation with cold air before and after the inhalation of atropine. Multiple aspects of pulmonary mechanics were also recorded. Significant and equivalent airway obstruction developed with and without atropine (control delta FEV1 = 1.0 +/- 0.2 (SE) liter; postatropine = 0.9 +/- 0.3 liter). Despite this, RHL was 17.1% greater and Trt fell 16% more after atropine. These data demonstrate that atropine can influence heat transfer within the lung and alter the sites of conditioning.  相似文献   

8.
It has been suggested that the human pulmonary acinus operates at submaximal efficiency at rest due to substantial spatial heterogeneity in the oxygen partial pressure (Po(2)) in alveolar air within the acinus. Indirect measurements of alveolar air Po(2) could theoretically mask significant heterogeneity if intra-acinar perfusion is well matched to Po(2). To investigate the extent of intra-acinar heterogeneity, we developed a computational model with anatomically based structure and biophysically based equations for gas exchange. This model yields a quantitative prediction of the intra-acinar O(2) distribution that cannot be measured directly. Temporal and spatial variations in Po(2) in the intra-acinar air and blood are predicted with the model. The model, representative of a single average acinus, has an asymmetric multibranching respiratory airways geometry coupled to a symmetric branching conducting airways geometry. Advective and diffusive O(2) transport through the airways and gas exchange into the capillary blood are incorporated. The gas exchange component of the model includes diffusion across the alveolar air-blood membrane and O(2)-hemoglobin binding. Contrary to previous modeling studies, simulations show that the acinus functions extremely effectively at rest, with only a small degree of intra-acinar Po(2) heterogeneity. All regions of the model acinus, including the peripheral generations, maintain a Po(2) >100 mmHg. Heterogeneity increases slightly when the acinus is stressed by exercise. However, even during exercise the acinus retains a reasonably homogeneous gas phase.  相似文献   

9.
A mathematical model of the unsteady-state heat and mass exchange of expired air in the bronchial tree is suggested. The model includes heat and mass exchange between air and bronchial walls, and heat exchange between blood circulation and bronchial tree. A problem has been numerically solved as a unidimensional one in the quasi-steady-state formulation. It is shown that air conditioning occurs through the whole length of a respiratory tract. During inspiration bronchial walls are cooled, that in its turn induces a decrease of air temperature and water vapour content in time. That process depends on the intensity of lung blood circulation and character of air velocity changes during inspiration.  相似文献   

10.
The bolus inhalation method was used to measure the fraction of inhaled chlorine (Cl(2)) and ozone (O(3)) absorbed during a single breath as a function of longitudinal position in the respiratory system of 10 healthy nonsmokers during oral and nasal breathing at respired flows of 150, 250, and 1,000 ml/s. At all experimental conditions, <5% of inspired Cl(2) penetrated beyond the upper airways and none reached the respiratory air spaces. On the other hand, larger penetrations of O(3) beyond the upper airways occurred as flow increased and during nasal than during oral breathing. In the extreme case of oral breathing at 1,000 ml/s, 35% of inhaled O(3) penetrated beyond the upper airways and approximately 10% reached the respiratory air spaces. Mass transfer theory indicated that the diffusion resistance of the tissue phase was negligible for Cl(2) but important for O(3). The gas phase resistances were the same for Cl(2) and O(3) and were directly correlated with the volume of the nose and mouth during nasal and oral breathing, respectively.  相似文献   

11.
Abstract. A simulation of the quantitative influence of altitude on photosynthetic CO2 uptake capability (AP) included the effects of predicted changes (1) in air temperature (lapse rate) and (2) leaf temperature, (3) ambient pressure and CO2 concentration, and (4) the diffusion coefficient for CO2 in air. When a dry lapse rate (0.01°C m−1) in air temperature was simulated, significant declines (up to 14%) in AP were predicted from sea level to 4km altitude. A moist lapse rate of 0.003°C m−1 resulted in less than a 4% decrease in AP over the same altitude range. When natural leaf temperatures (predicted from heat balance analyses) were simulated, AP was significantly greater (∼20%) than when leaf temperatures were considered equal to air temperature for all lapse conditions. There was virtually no change in AP with altitude when predicted leaf temperatures and moist lapse conditions were simulated. There was a significant (∼10%) increase in AP with altitude when leaf temperature was held constant at 30°C (regardless of altitude) under moist lapse conditions. Future studies evaluating the effects of elevation on photosynthesis could benefit from the above considerations of the effects of natural leaf temperature regimes and prevailing lapse conditions on CO2 uptake potential.  相似文献   

12.
Longitudinal distribution of canine respiratory heat and water exchanges   总被引:1,自引:0,他引:1  
We assessed the longitudinal distribution of intra-airway heat and water exchanges and their effects on airway wall temperature by directly measuring respiratory fluctuations in airstream temperature and humidity, as well as airway wall temperature, at multiple sites along the airways of endotracheally intubated dogs. By comparing these axial thermal and water profiles, we have demonstrated that increasing minute ventilation of cold or warm dry air leads to 1) further penetration of unconditioned air into the lung, 2) a shift of the principal site of total respiratory heat loss from the trachea to the bronchi, and 3) alteration of the relative contributions of conductive and evaporative heat losses to local total (conductive plus evaporative) heat loss. These changes were not accurately reflected in global measurements of respiratory heat and water exchange made at the free end of the endotracheal tube. Raising the temperature of inspired dry air from frigid to near body temperature principally altered the mechanism of airway cooling but did not influence airway mucosal temperature substantially. When local heat loss was increased from both trachea and bronchi (by increasing minute ventilation), only the tracheal mucosal temperature fell appreciably (up to 4.0 degrees C), even though the rise in heat loss from the bronchi about doubled that in the trachea. Thus it appears that the bronchi are better able to resist changes in airway wall temperature than is the trachea. These data indicate that the sites, magnitudes, and mechanisms of respiratory heat loss vary appreciably with breathing pattern and inspired gas temperature and that these changes cannot be predicted from measurements made at the mouth. In addition, they demonstrate that local heat (and presumably, water) sources that replenish mucosal heat and water lost to the airstream are important in determining the degree of local airway cooling (and presumably, drying).  相似文献   

13.
On the basis of Weibel respiratory tract model the mathematical model of mass and heat transfer in the lungs was solved for steady-state one-dimensional case. Coefficients of mass and heat transfer were taken from empirical expressions for canals. The model shows that independent water vapour or air heat saturation in the lungs occurs in 12-14 generations of the bronchial tree. The saturation site depends upon volume velocity of the air and functioning of the upper respiratory tract.  相似文献   

14.
Nitric oxide (NO) appears in the exhaled breath and is a potentially important clinical marker. The accepted model of NO gas exchange includes two compartments, representing the airway and alveolar region of the lungs, but neglects axial diffusion. We incorporated axial diffusion into a one-dimensional trumpet model of the lungs to assess the impact on NO exchange dynamics, particularly the impact on the estimation of flow-independent NO exchange parameters such as the airway diffusing capacity and the maximum flux of NO in the airways. Axial diffusion reduces exhaled NO concentrations because of diffusion of NO from the airways to the alveolar region of the lungs. The magnitude is inversely related to exhalation flow rate. To simulate experimental data from two different breathing maneuvers, NO airway diffusing capacity and maximum flux of NO in the airways needed to be increased approximately fourfold. These results depend strongly on the assumption of a significant production of NO in the small airways. We conclude that axial diffusion may decrease exhaled NO levels; however, more advanced knowledge of the longitudinal distribution of NO production and diffusion is needed to develop a complete understanding of the impact of axial diffusion.  相似文献   

15.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

16.
A mathematical model of the dynamic (periodic) heat exchange from the respiratory tract of a chicken is postulated and solved analytically. The model expresses the periodic respiratory heat loss as a function of respiration rate, respiratory air velocity, ambient temperature and humidity ratio, and body (trachea) temperature. It is unique in that previous models have been formulated for steady state heat transfer. The processes of sensible and latent heat exchange are considered as uncoupled processes.  相似文献   

17.
Wind chill is defined as the excess of sensible heat loss over what would occur at zero wind speed with other conditions unchanged. Wind chill can be broken down into a part that is determined by air temperature and a radiative part that comprises wind-dependent effects on additional long-wave radiative exchange and on solar radiation (by reducing solar warming). Radiative exchange and gain from solar radiation are affected by changes that are produced by wind in both surface and fleece insulations. Coefficients are derived for (a) converting the components of sensible heat exchange (air-temperature-dependent including both convective and associated long-wave radiative, additional long-wave radiative and solar) into the components of the total heat loss that are associated with wind and (b) for calculating equivalent air temperature changes. The coefficients contain terms only in wind speed, wetting of the fleece and fleece depth; these determine the external insulation.Calculation from standard meteorological records, using Plymouth and Aberdeen in 1973 as examples, indicate that in April–September 1973 at Plymouth reduction in effective solar warming constituted 28% of the 24-h total wind chill, and 7% in the other months of the year combined; at Aberdeen the corresponding percentages were 25% and 6%. Mean hour-of-day estimates for the months of April and October showed that at midday reduction in solar warming due to wind rose to the order of half the air-temperature-dependent component of wind chill, with a much smaller effect in January. For about six hours at midday in July reduction in solar warming due to wind was similar in magnitude to the air-temperature-dependent component.It is concluded that realistic estimates of wind chill cannot be obtained unless the effect of solar radiation is taken into account. Failure to include solar radiation results not only in omitting solar warming but also in omitting the effects of wind in reducing that warming.The exchange of sensible (non-evaporative) heat loss between a homeothermic animal and its environment can be divided into two parts: one part is due to the temperature difference between the animal and the surrounding air, and the other part is due to additional long-wave radiative exchange between animal and environment and to solar radiation. Both parts of the heat exchange are determined in magnitude by the animal's thermal insulation, which is itself affected by windspeed and wetting. Wind diminishes as animal's external insulation, so increasing heat loss under all conditions when the air temperature is lower than the animal's surface temperature: this effect is termed wind chill. Wind chill has previously been investigated more commonly in relation to man (Burton an Edholm, 1955; Smithson and Baldwin, 1978; Mumford, 1979; Baldwin and Smithson, 1979). This paper is concerned with the separate contributions to wind chill calculated for sheep that can be associated with convective and radiative heat exchanges.  相似文献   

18.
The significance of convective and diffusive gas transport in the respiratory system was assessed from the response of combined inert gas and particle boluses inhaled into the conducting airways. Particles, considered as "nondiffusing gas," served as tracers for convection and two inert gases with widely different diffusive characteristics (He and SF6) as tracers for convection and diffusion. Six-milliliter boluses labeled with monodisperse di-2-ethylhexyl sebacate droplets of 0.86-microns aerodynamic diameter, 2% He, and 2% SF6 were inspired by three anesthetized mechanically ventilated beagle dogs to volumetric lung depths up to 170 ml. Mixing between inspired and residual air caused dispersion of the inspired bolus, which was quantified in terms of the bolus half-width. Dispersion of particles increased with increasing lung depth to which the boluses were inhaled. The increase followed a power law with exponents less than 0.5 (mean 0.39), indicating that the effect of convective mixing per unit volume was reduced with depth. Within the pulmonary dead space, the behavior of the inert gases He and SF6 was similar to that of the particles, suggesting that gas transport was almost solely due to convection. Beyond the dead space, dispersion of He and SF6 increased more rapidly than dispersion of particles, indicating that diffusion became significant. The gas and particle bolus technique offers a suitable approach to differential analysis of gas transport in intrapulmonary airways of lungs.  相似文献   

19.
The importance of gas phase diffusion in insect gas exchange remains unclear. The role of diffusion in gas exchange of developing Hyalophora cecropia pupae was examined by altering the gaseous diffusion coefficient in the breathing mixture. Gaseous diffusion coefficients were manipulated by substituting helium or sulfur hexafluoride for the nitrogen usually present in air. Sensitive mass loss recordings were employed to monitor gas exchange activity. Mass loss recordings showed a two-phase cycle, open and closed-flutter. Mass loss rates during the open and closed-flutter periods were not altered in proportion to the changes induced in the rate of diffusion. Open-phase duration was inversely and proportionally related to the diffusion coefficient. These results are consistent with changes in spiracle resistance or convective flow during the open period in response to a change in the diffusion coefficient. In addition, they indicate a significant gas phase diffusive resistance within the pupal tracheal system. This previously unreported gas phase resistance appears to be a major determinant of the duration of the open period and thus of overall water loss rates in these pupae.  相似文献   

20.
Disposable shaking bioreactors are a promising alternative to other disposable bioreactors owing to their ease of operation, flexibility, defined hydrodynamics and characterization. Shaken bioreactors of sizes 20 L and 50 L are characterized in terms of heat transfer characteristics in this research work. Water and an 80% glycerol–water system were used as fluid. Results indicated large heat generation due to shake mixing which was observed by temperature difference between the fluid inside the vessel and the surrounding air outside the vessel. Maximum temperature difference of ca. 30 K was encountered for a 50 L vessel, at 300 rpm and 20 L filling volume. Outside heat transfer rate was governing the overall heat transfer process. Lateral air flow did increase heat transfer rates to large extent. An empirical correlation of overall heat transfer coefficient was obtained in terms of filling volume, rotational speed and lateral air flow rate. However, as the vessel thickness increased, the overall heat transfer process was limited by vessel wall resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号