首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
五种淡水鱼类幼鱼游泳能力的比较   总被引:1,自引:0,他引:1  
付翔  付成  付世建 《生态学杂志》2020,(5):1629-1635
为了探讨栖息于不同生境中鱼类的游泳能力和偏好游泳速度及其生理机制,本研究以中华倒刺鲃(Spinibarbus sinensis)、异育银鲫(Carassius auratus gibelio)、岩原鲤(Procypris rabaudi)、青鱼(Mylopharyngodon piceus)和胭脂鱼(Myxocryprinus asiaticus)5种鱼的幼鱼为对象,在(25±1)℃条件下测定了5种鱼类的标准代谢率(SMR)、最大代谢率(MMR)、有氧代谢范围(MS)、临界游泳速度(Ucrit)、最大匀加速游泳速度(Ucat)和偏好游泳速度(Upref)。结果发现:5种实验鱼中,中华倒刺鲃的游泳能力最强,游泳能力较差的为青鱼和胭脂鱼;5种鱼之间的代谢和游泳能力差异显著,其偏好游泳速度主要集中在(10~24.5cm·s^-1)区域。研究表明,鱼类游泳能力的种间差异可能主要由心鳃系统相关的呼吸能力和体型相关的游泳效率所决定。本研究提供的有关鱼类游泳能力、偏好游泳速度等资料对于鱼道设计等有一定的参考价值。  相似文献   

2.
不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应   总被引:1,自引:1,他引:0  
在(25±1)℃的条件下,测定瓦氏黄颡(Pelteobagrus vachelli Richardson)幼鱼体重(4.34±0.13)g的临界游泳速度(Ucrit),然后分别以临界游泳速度的不同百分比(20、40、60、80、100%Ucrit)将实验鱼分为5个速度处理组,另外设置静止对照组和高速力竭对照组。处理组实验鱼在不同游泳速度下分别游泳20min,在此过程中测定并计算运动代谢率(Activity metabolic rate,AMR),随后测定肌肉、血液和肝脏中的乳酸、糖原和葡萄糖含量。结果显示:实验鱼的绝对临界游泳速度为(48.28±1.02)cm/s,相对临界游泳速度为(6.78±0.16)BL/s;随着游泳速度的提高AMR显著增加(Pcrit时肌乳酸和血乳酸含量显著高于80%Ucrit的水平(P0.05);100%Ucrit时肝糖原含量显著低于40%Ucrit的水平(P0.05)。经计算瓦氏黄颡幼鱼到达临界游泳速度时的无氧代谢功率比例仅为11.0%,表明其游泳运动主要以有氧代谢供能;实验鱼的无氧代谢大约在80%Ucrit才开始启动,与其他鱼类比较启动时间较晚,说明其游泳运动对无氧代谢的依赖程度较低。研究提示瓦氏黄颡幼鱼是一种有氧运动能力较强的鱼类,这一能量代谢特征可能与提高其生存适合度有关。    相似文献   

3.
溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响   总被引:5,自引:0,他引:5  
在(25 1)℃条件下, 以鳊鱼(Parabramis pekinensis)体重(4.70 0.11)g, n=32、中华倒刺鲃(Spinibarbus sinensis)体重(3.26 0.06)g, n=32幼鱼为研究对象, 采用鱼类游泳代谢测定仪在水体溶氧为8、4、2、1 mgO2/L条件下分别测定其临界游泳速度(Ucrit)和游泳代谢率(MO2), 并计算出静止代谢率(MO2rest)、最大游泳代谢率(MO2max)、代谢范围(MS)及单位位移能耗(COT)等相关参数。结果显示, 随着溶氧水平的下降, 鳊鱼、中华倒刺鲃幼鱼的Ucrit均逐渐下降, 除中华倒刺鲃幼鱼的值在4与8 mgO2/L下没有显著性差异外, 其他各组均差异显著(P0.05); 在同一溶氧水平下的中华倒刺鲃Ucrit显著大于鳊鱼(P0.05)。两种鱼的MO2max和MS均随DO的下降而显著下降, 但MO2rest在溶氧水平低于1 mgO2/L才显著下降(P0.05)。研究还发现鳊鱼、中华倒刺鲃幼鱼的MO2在同一游泳速度下随溶氧水平下降而降低, 而在相同溶氧水平下随游泳速度的上升而显著升高(P0.05); COT随游泳速度上升而显著降低(P0.05), 但在高游泳速度下相对稳定, 在同一游泳速度下随着DO的下降有所减小。中华倒刺鲃的COT整体上小于鳊鱼, 且在低游泳速度下差异更大。87.5%(1-8 mgO2/L)溶氧水平的下降导致两种鱼类相似的Ucrit变化(53% vs. 50%), 但溶氧水平由8降到4 mgO2/L时, 鳊鱼32%MO2max的下降导致Ucrit下降13%, 但同样的溶氧水平下降虽然导致中华倒刺鲃的MO2max下降20%, 但由于MO2rest和COT的下降, 其Ucrit并没有显著的变化。实验结果表明: 不同溶氧水平对不同鱼种游泳能力的影响存在差异, 这种差异与其代谢对策密切相关。    相似文献   

4.
溶氧水平对鲫鱼代谢模式的影响   总被引:3,自引:0,他引:3  
张伟  曹振东  付世建 《生态学报》2012,32(18):5806-5812
为了探讨水体溶氧水平对鲫幼鱼(Carassius carassius)运动、消化能力及其交互作用的影响,在(25.0±0.5)℃温度条件下,测定了8(饱和溶氧水平)、2和1mg/L溶氧水平下摄食(饱足摄食)和空腹组(空腹2 d)鲫鱼的临界游泳速度(Ucrit)、运动前耗氧率(MO2pre-exercise)、活跃耗氧率(MO2active)和代谢范围(MS)。摄食诱导的耗氧率上升在各溶氧水平下无显著差异。在饱和溶氧水平下,摄食组和空腹组的Ucrit没有显著差异,但在1和2 mg/L条件下,摄食组的Ucrit显著低于空腹组(P<0.05)。在饱和溶氧水平条件下,消化和运动诱导的耗氧率上升在各个游泳水平均能完全叠加,且摄食组鱼类与空腹组鱼类具有相似的MS和Ucrit和更高的MO2active,提示鲫鱼在常氧下为添加代谢模式。随着溶氧水平下降至2和1mg/L,呼吸能力(摄食组的MO2active)对溶氧水平下降较运动耗氧率更为敏感,消化诱导的耗氧率增加只能在较低游泳速度叠加,与空腹组鱼类比较,摄食组鱼类的MS和Ucrit显著下降,MO2active无显著差异,提示低氧下消化和运动对氧气需求竞争的加剧使其代谢模式转化为消化优先。  相似文献   

5.
饥饿对南方鲇幼鱼游泳能力个体变异和重复性的影响   总被引:5,自引:0,他引:5  
为考察肉食性鱼类有氧和无氧运动能力的种内个体变异、重复性及其对饥饿的响应, 研究以南方鲇(Silurus meridionalis Chen)幼鱼为实验对象, 在(250.5)℃条件下测定对照组(n=28)和饥饿组(n=29)的临界游泳速度(Critical swimming speed, Ucrit)、暴发游泳速度(Constant acceleration speed, Ucat)和固定流速耐受时间(Endurance), 分析游泳能力的个体变异、稳定性及饥饿的影响。结果显示: (1)饥饿组的体重、体长和肥满度均分别显著下降了(15.100.86)%、(2.570.40)%和(7.941.59)%(P0.05), 而对照组无明显变化; (2)对照组的Ucat和耐受时间无明显变化(P0.05), 但Ucrit下降(6.632.25)%(P=0.031), 而除耐受时间外饥饿组其Ucrit和Ucat分别显著下降了(26.002.76)%和(13.681.86)%(P0.001), 并饥饿组Ucrit的下降比例显著大于其Ucat(P0.001); (3)并且对照组三个指标的变异系数(Coefficient of variation, CV)变化方向和程度不尽相同, 饥饿组的Ucrit、Ucat和耐受时间的CV全部增加; (4)南方鲇幼鱼Ucrit和Ucat呈正相关且2周的饥饿并未改变此正相关。饥饿明显降低南方鲇幼鱼两种游泳能力并导致游泳能力的个体变异变大, 但没有改变该种鱼的有氧运动能力和无氧运动能力之间的内在正相关关系。研究表明无氧运动能力在环境改变后显得更为保守, 种内个体变异的变动可能有利于在相同自然选择压力下种内个体采取不同的捕食和避敌对策。    相似文献   

6.
In the field, Atlantic cod face seasonal changes in food availability that in turn lead to changes in condition. To examine the physiological consequences of these changes in condition, we measured routine metabolic rate (RMR) to estimate standard metabolic rate (SMR), active metabolic rate (AMR), aerobic scope, critical swimming speed (Ucrit), cost of transport, sprint performance, time to exhaustion, and postexhaustion metabolic rate (EMR) for 24 Atlantic cod from the Gulf of St. Lawrence. Cod were measured at their initial condition (condition factor of 0.676+/-0.076) and after 9 wk of feeding (condition factor of 0.923+/-0.096). These levels of condition are representative of wild cod in the Gulf of St. Lawrence during the spring and during the fall-early winter, respectively. The improved condition did not change mass-specific SMR. However, mass-specific AMR, aerobic scope, and EMR decreased with the improvement in condition. The various measures of swimming performance were affected differently. Ucrit increased and cost of transport at 1.3 and 1.5 body lengths s(-1) decreased with improved condition, but the cost of transport at 0.3, 0.9, 1.1, 1.7, and 1.9 body lengths s(-1), sprint performance, and time to exhaustion did not change. Hierarchies for the speed at first burst-coast, the proportion of Ucrit supported by burst-coasts, and time to exhaustion were maintained with the improvement in condition. The relationships between metabolic rates and swimming performance differed with condition level, with stronger correlations apparent in the cod at their initial condition. Given the low condition of wild cod stocks, these responses indicate that reduced performance, due to both maintenance of metabolic expenditures and modified swimming capacities, may impair survival under conditions of reduced food availability.  相似文献   

7.
Estimation of fish activity costs using underwater video cameras   总被引:2,自引:0,他引:2  
Swimming speed and activity costs of dace ( Phoxinus eos × P. neogaeus ) were estimated in the field using underwater video cameras. Activity costs were estimated by converting swimming speeds and the number of movements into swimming costs. Average swimming speed ranged from 6.7 to 12.2 cm.s−1 across 2 h periods and varied significantly among dates and time of day. The time spent swimming by dace ranged from 616 to 17 640 s 2 h−1. Activity costs per 2h period ranged from 2.1 to 4O.2J 2h−1 and were strongly correlated to the time spent swimming. Daily activity cost estimated using the cameras averaged 128.9J day−1 and was equivalent to 1.7 times the standard metabolic rate. Activity cost predicted using a bioenergetic model in conjunction with independent estimates of consumption and growth rates averaged 138.8J day−1. This study indicated that swimming characteristics and activity costs of dace varied significantly both within and among days. These analyses also indicated that equally valid activity costs for fish in the field can be estimated using video cameras and the difference between Consumption and growth rates.  相似文献   

8.
Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3‐D underwater videography to quantify the swimming trajectories and propulsive modes of bluegills sunfish (Lepomis macrochirus, Rafinesque) in the field with high spatial (1–3 mm per pixel) and temporal (60 Hz frame rate) resolution. Although field swimming trajectories were variable and nonlinear in comparison to quasi steady‐state swimming in recirculating flumes, they were much less unsteady than the volitional swimming behaviors that underlie existing predictive models of field swimming cost. Performance analyses suggested that speed and path curvature data could be used to derive reasonable estimates of locomotor cost that fit within measured capacities for sustainable activity. The distinct differences between field swimming behavior and performance measures obtained under steady‐state laboratory conditions suggest that field observations are essential for informing approaches to quantifying locomotor performance in the laboratory.  相似文献   

9.
Allometric growth is a common feature during fish larval development. It has been proposed as a growth strategy to prioritize the development of body segments related to primordial functions like feeding and swimming to increase the probability of survival during this critical period. In the present study we evaluated the allometric growth patterns of body segments associated to swimming and feeding during the larval stages of Pacific red snapper Lutjanus peru. The larvae were kept under intensive culture conditions and sampled every day from hatching until day 33 after hatching. Each larva was classified according to its developmental stage into yolk-sac larva, preflexion larva, flexion larva or postflexion larva, measured and the allometric growth coefficient of different body segments was evaluated using the potential model. Based on the results we can infer the presence of different ontogenetic priorities during the first developmental stages associated with vital functions like swimming during the yolk-sac stage [total length (TL) interval = 2.27–3.005 mm] and feeding during the preflexion stage (TL interval = 3.007–5.60 mm) by promoting the accelerated growth of tail (post anal) and head, respectively. In the flexion stage (TL interval = 5.61–7.62 mm) a change in growth coefficients of most body segments compared to the previous stage was detected, suggesting a shift in growth priorities. Finally, in the postflexion stage (TL interval = 7.60–15.48 mm) a clear tendency to isometry in most body segments was observed, suggesting that growth priorities have been fulfilled and the larvae will initiate with the transformation into a juvenile. These results provide a framework of the larval growth of L. peru in culture conditions which can be useful for comparative studies with other species or in aquaculture to evaluate the changes in larval growth due to new conditions or feeding protocols.  相似文献   

10.
Sexual selection can increase morphological diversity within and among species. Little is known regarding how interspecific variation produced through sexual selection affects other functional systems. Here, we examine how morphological diversity resulting from sexual selection impacts aerobic locomotor performance. Using Xiphophorus (swordtail fish) and their close relatives (N = 19 species), we examined whether the evolution of a longer sexually selected sword affects critical swimming speed. We also examined the effect of other suborganismal, physiological, and morphological traits on critical swimming speed, as well as their relationship with sword length. In correlation analyses, we found no significant relationship between sword length and critical swimming speed. Unexpectedly, we found that critical swimming speed was higher in species with longer swords, after controlling for body size in multiple regression analyses. We also found several suborganismal and morphological predictors of critical swimming speed, as well as a significant negative relationship between sword length and heart and gill mass. Our results suggest that interspecific variation in sword length is not costly for this aspect of swimming performance, but further studies should examine potential costs for other types of locomotion and other components of Darwinian fitness (e.g., survivorship, life span).  相似文献   

11.
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.  相似文献   

12.
Comparative physiologists and ecologists have searched for aspecific morphological, physiological or biochemical parameterthat could be easily measured in a captive, frozen, or preservedanimal, and that would accurately predict the routine behavioror performance of that species in the wild. Many investigatorshave measured the activity of specific enzymes in the locomotormusculature of marine fishes, generally assuming that high specificactivities of enzymes involved in aerobic metabolism are indicatorsof high levels of sustained swimming performance and that highactivities of anaerobic metabolic enzymes indicate high levelsof burst swimming performance. We review the data that supportthis hypothesis and describe two recent studies we have conductedthat specifically test the hypothesis that biochemical indicesof anaerobic or aerobic capacity in fish myotomal muscle correlatewith direct measures of swimming performance. First, we determinedthat the maximum speed during escapes (C-starts) for individuallarval and juvenile California halibut did not correlate withthe activity of the enzyme lactate dehydrogenase, an index ofanaerobic capacity, in the myotomal muscle, when the effectsof fish size are factored out using residuals analysis. Second,we found that none of three aerobic capacity indices (citratesynthase activity, 3-hydroxy-o-acylCoA dehydrogenase activity,and myoglobin concentration) measured in the slow, oxidativemuscle of juvenile scombrid fishes correlated significantlywith maximum sustained speed. Thus, there was little correspondencebetween specific biochemical characteristics of the locomotormuscle of individual fish and whole animal swimming performance.However, it may be possible to identify biochemical indicesthat are accurate predictors of animal performance in phylogeneticallybased studies designed to separate out the effects of body size,temperature, and ontogenetic stage.  相似文献   

13.
Abstract The Atlantic silverside ( Menidia menidia ) exhibits countergradient latitudinal variation in somatic growth rate along the East Coast of North America. Larvae and juveniles from high-latitude populations display higher intrinsic rates of energy consumption and growth than genotypes from low-latitude populations. The existence of submaximal growth in some environments suggests that trade-offs must counter the oft-cited theoretical benefits of energy and growth maximization (e.g., "bigger is better,""faster is better") in the immature life stages. We hypothesized that energy and growth maximization trades off against investment in defense from predators. We conducted laboratory selection experiments to compare vulnerability to predation of silversides from: (1) fast-growing northern (Nova Scotia, NS) versus slow-growing southern (South Carolina, SC) source populations; (2) phenotypically manipulated fast-growing versus moderately-growing NS fish; and (3) recently fed versus unfed NS and SC fish. Tests involved fish drawn from common-garden environments and were conducted by subjecting mixed-treatment schools of size-matched silversides to natural, common piscine predators. NS silversides suffered significantly higher predation mortality than SC silversides. Parallel results were found in phenotypic manipulation of growth: NS silversides reared on a fast-growth trajectory (∼1.0 mm/day) were significantly more vulnerable to predation than those growing at a moderate rate (∼0.5 mm/day). Food consumption also affected vulnerability to predators: Silversides with large meals in their stomachs suffered significantly higher predation mortality than unfed silversides. Differences in predation vulnerability were likely due to swimming performance, not attractiveness to predators. Our findings demonstrate that maximization of energy intake and growth rate engenders fitness costs in the form of increased vulnerability to predation.  相似文献   

14.
锦鲫的摄食代谢与运动代谢及其相互影响   总被引:1,自引:0,他引:1  
为了探讨锦鲫(Carassius auratus)幼鱼摄食后特殊动力作用(SDA)的变化特征及运动代谢与摄食代谢之间的相互影响,实验首先灌喂锦鲫4%体重的饲料和等体积的纤维素(湿重),测定灌喂前后的耗氧率;另设灌喂饲料、灌喂纤维素、空腹组(对照组)3个组,测定3组的临界游泳速度(Ucrit)和运动耗氧率(MO2);然后在70%、0%临界游泳速度下,分别测定饱足摄食组和空腹组的耗氧率。结果显示:1灌喂饲料后代谢率快速上升,达到峰值后又迅速下降,代谢时间较短,没有一个相对稳定的平台期,灌喂纤维素后代谢率没有显著性变化(P0.05)。提示锦鲫幼鱼的特殊动力作用功率曲线为一个典型的"三角型"模型,且在特殊动力作用总耗能中,生化特殊动力作用占特殊动力作用总耗能的绝大部分,而机械特殊动力作用只占特殊动力作用的极少部分。2锦鲫幼鱼在摄食后临界游泳速度显著下降(P0.05),代谢率显著升高(P0.05)。摄食后的运动过程中,代谢率从摄食开始到代谢率回落至空腹组代谢的标准误范围内的首个数据所对应的时间长度均为6.5 h,且摄食代谢无显著性差异。提示,对锦鲫幼鱼来说,摄食代谢降低了其运动能力,而运动代谢并没有影响摄食代谢。  相似文献   

15.
亚成体巨须裂腹鱼游泳能力及活动代谢研究   总被引:2,自引:0,他引:2  
以野生雅鲁藏布江巨须裂腹鱼(Schizothorax macropogon)为对象,通过自制的鱼类游泳实验装置,测定了4个温度(5、10、15和18℃)梯度下亚成体巨须裂腹鱼的临界游泳速度(Ucrit)及流速变化对耗氧率的影响,并通过摄像记录分析了不同游泳速度下的游泳行为。野生亚成体巨须裂腹鱼的临界游速随着温度的变化呈近似线性的递增趋势(P<0.001),4个温度下的绝对临界游速(Ucrit-a)分别为(0.88±0.07)、(1.09±0.07)、(1.24±0.15)和(1.49±0.15)m/s;若以单位时间内游过的体长倍数(BL/s)表示,相对临界游速(Ucrit-r)分别为(3.96±0.21)、(4.4±0.16)、(4.9±0.18)和(5.35±0.14)BL/s。根据不同温度及流速下耗氧率的变化情况,采用非线性拟合得到了4个温度梯度下耗氧率与游泳速度关系的幂函数模型(P<0.05)。模型表明耗氧率随游泳速度的增大而增加,且温度越高耗氧率随游泳速度的变化越显著。4个温度下的速度指数分别为2.4、2.6,2.8及3.1,表明有氧运动的效率随温度升高有所降低。在自然水温条件下(5—9℃),摆尾频率(TBF)与流速的关系呈线性正相关(P<0.001),而运动步长(Ls)的变化与流速没有显著关系,出现由高至低再升高的三个阶段。录像分析表明在流速逐渐增加的过程中,巨须裂腹鱼采用了三种不同的游泳方式,以实现降低能量消耗的目的。研究可为鱼道等过鱼设施的设计提供参考,对数量日益减少的巨须裂腹鱼保护具有较大的意义。  相似文献   

16.
&#  &#  &#  &#  &#  Rachel Taupier  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2013,37(6):993-998
以中国地质公园(神农架)野生动物繁育基地提供的齐口裂腹鱼(Schizothorax prenanti)幼鱼(体长为14.017.5 cm,体重为39.665.6 g)为研究对象,利用自制鱼类游泳特性(Swimming performance)研究装置,运用递增流速法(Stepped velocity test),研究了鱼类疲劳后20d和40d的游泳特性恢复状况。结果表明:(1)在20d内齐口裂腹鱼临界游泳速度(Critical swimming speed,Ucrit)相比于初次测试(20d前)有所降低,20d内的恢复状况较差;而在40d后,临界游泳速度已经基本恢复到最初状况,40d内的恢复状况较好。(2)疲劳后鱼类游泳效率显著下降,并且在40d后无法恢复正常。虽然40d后速度指数低于20d后速度指数,40d后游泳效率高于20d后游泳效率,但是相对于初次测试,40d后游泳效率恢复效果并不明显。(3)齐口裂腹鱼在疲劳后40d内,恢复能力(Recovery capability)无法恢复到正常状况,但由于3次测试中疲劳后过量耗氧(Excess post-exercise oxygen cost,EPOC) 波动并不大,说明疲劳对其恢复能力影响并不大。(4)20d后和40d后无氧呼吸时间均较第一次测试时提前,说明疲劳损伤对其有氧呼吸能力产生了持续影响。(5)疲劳对鱼类生态行为(Ecological behavior)影响不明显。研究有利于为鱼道建设提供基础资料,对生物多样性保护具有深远意义。    相似文献   

17.
This study examines whether injections of the commonly used bacterial-challenge pathogen Listonella anguillarum (formerly Vibrio anguillarum) negatively impact the ability of rainbow trout Oncorhynchus mykiss Walbaum to perform repeat swimming trials. Fish were given intraperitoneal injections of either a sub-lethal (10(5) colony forming units; CFUs) or a lethal (10(7) CFUs) dose of L. anguillarum, held for 48 h, and then given 2 successive ramp critical swimming speed (Ucrit) tests separated by 45 min. Compared with saline-injected control fish, the low-dose injection did not significantly impair swimming performance and recovery. Similarly, Ucrit and re-performance for fish surviving the high-dose injection were comparable to control (2 of 6 fish died after injection and before testing). In contrast, a positive control test of seawater challenge did impair recovery of swimming performance. In view of these results and common use of L. anguillarum as a challenge pathogen for toxicological studies, it seems unlikely that the consequences of pathogenesis impact the important cardiorespiratory changes associated with exercise.  相似文献   

18.
Compensatory growth and oxidative stress in a damselfly   总被引:3,自引:0,他引:3  
Physiological costs of compensatory growth are poorly understood, yet may be the key components in explaining why growth rates are typically submaximal. Here we tested the hypothesized direct costs of compensatory growth in terms of oxidative stress. We assessed oxidative stress in a study where we generated compensatory growth in body mass by exposing larvae of the damselfly Lestes viridis to a transient starvation period followed by ad libitum food. Compensatory growth in the larval stage was associated with higher oxidative stress (as measured by induction of superoxide dismutase and catalase) in the adult stage. Our results challenge two traditional views of life-history theory. First, they indicate that age and mass at metamorphosis not necessarily completely translate larval stress into adult fitness and that the observed physiological cost may explain hidden carry-over effects. Second, they support the notion that costs of compensatory growth may be associated with free-radical-mediated trade-offs and not necessarily with resource-mediated trade-offs.  相似文献   

19.
The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag at the leading edge of schools, where they could maximize food intake while possibly retaining sufficient AS for other physiological functions. SMR was never related to position, suggesting that high maintenance costs do not necessarily motivate individuals to occupy frontal positions. In the wild, shifting of individuals to optimal spatial positions during changing conditions could influence structure or movement of entire schools.  相似文献   

20.
This study examines variation in brain growth relative somatic growth in four hominoids and three platyrrhines to determine whether there is a trade-off during ontogeny. I predicted that somatic growth would be reduced during periods of extensive brain growth, and species with larger degrees of encephalization would reach a smaller body size at brain growth completion because more energy is directed towards the brain. I measured cranial capacity and skeletal size in over 500 skeletal specimens from wild populations. I calculated nonlinear growth curves and velocity curves to determine brain/body growth allometry during ontogeny. In addition, I calculated linear regressions to describe the brain/body allometry during the postnatal period prior to brain size reaching an asymptote. The results showed that somatic growth is not substantially reduced in species with extensive brain growth, and body size at brain growth completion was larger in species with greater degrees of encephalization. Furthermore, large body size at brain growth completion was not correlated with interbirth interval, but was significantly correlated with prolonged juvenile periods and late age at maturity when data were corrected for phylogeny. These results indicate that neither reduction in body growth nor reproductive rate are compensatory mechanisms for the energetic costs of brain growth. Other avenues for meeting energetic costs must be in effect. In addition, the results show that somatic growth in encephalized species is particularly slow during the juvenile period after brain growth at or near completion, suggesting that these growth patterns are explained by reasons other than energetic costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号