共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the importance of the retinal pigment epithelium (RPE) for vision, the molecular processes involved in its specification are poorly understood. We identified two new mutant alleles for the zebrafish gene chokh (chk), which display a reduction or absence of the RPE. Unexpectedly, the neural retina (NR) in chk is specified and laminated, indicating that the regulatory network leading to NR development is largely independent of the RPE. Genetic mapping and molecular characterization revealed that chk encodes Rx3. Expression analyses show that otx2 and mitfb are not expressed in the prospective RPE of chk, indicating that the retinal homeobox gene rx3 acts upstream of the molecular network controlling RPE specification. Cellular transplantations demonstrate that rx3 function is autonomously required to specify the prospective RPE. Though rx2 is also absent in chk, neither rx2 nor rx1 is required for RPE development. Thus, our data provide the first indication that, in addition to controlling optic lobe evagination and proliferation, chk/rx3 also determines cellular fate. 相似文献
2.
3.
4.
5.
Iwashita M Watanabe M Ishii M Chen T Johnson SL Kurachi Y Okada N Kondo S 《PLoS genetics》2006,2(11):e197
Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1) gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K+ channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the α2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for the pattern change in the jaguar/obelix mutant. 相似文献
6.
Feinstein M Markus B Noyman I Shalev H Flusser H Shelef I Liani-Leibson K Shorer Z Cohen I Khateeb S Sivan S Birk OS 《American journal of human genetics》2010,87(6):820-655
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by PLP1 mutations. A similar autosomal-recessive phenotype, Pelizaeus-Merzbacher-like disease (PMLD), has been shown to be caused by homozygous mutations in GJC2 or HSPD1. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD in which linkage to PLP1, GJC2, and HSPD1 was excluded. Through genome-wide homozygosity mapping and mutation analysis, we demonstrated in all affected individuals a homozygous frameshift mutation that fully abrogates the main active domain of AIMP1, encoding ARS-interacting multifunctional protein 1. The mutation fully segregates with the disease-associated phenotype and was not found in 250 Bedouin controls. Our findings are in line with the previously demonstrated inability of mutant mice lacking the AIMP1/p43 ortholog to maintain axon integrity in the central and peripheral neural system. 相似文献
7.
The BMP signaling pathway plays a key role during dorsoventral pattern formation of vertebrate embryos. In zebrafish, all cloned mutants affecting this process are deficient in members of the BMP pathway. In a search for factors differentially expressed in swirl/bmp2b mutants compared with wild type, we isolated zebrafish Sizzled, a member of the secreted Frizzled-related protein family and putative Wnt inhibitor. The knockdown of sizzled using antisense morpholino phenocopied the ventralized mutant ogon (formerly also known as mercedes and short tail). By sequencing and rescue experiments, we demonstrate that ogon encodes sizzled. Overexpression of sizzled, resulting in strongly dorsalized phenotypes, and the expression domains of sizzled in wild type embryos, localized in the ventral side during gastrulation and restricted to the posterior end during segmentation stages, correlate with its role in dorsoventral patterning. The expanded expression domain of sizzled in ogon and chordino together with its downregulation in swirl suggests a BMP2b-dependent negative autoregulation of sizzled. Indicating a novel role for a secreted Frizzled-related protein, we show that, in addition to the BMP pathway, a component of the Wnt signaling pathway is required for dorsoventral pattern formation in zebrafish. 相似文献
8.
Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C 总被引:18,自引:0,他引:18 下载免费PDF全文
Novelli G Muchir A Sangiuolo F Helbling-Leclerc A D'Apice MR Massart C Capon F Sbraccia P Federici M Lauro R Tudisco C Pallotta R Scarano G Dallapiccola B Merlini L Bonne G 《American journal of human genetics》2002,71(2):426-431
Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder, characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. The LMNA gene encoding two nuclear envelope proteins (lamins A and C [lamin A/C]) maps to chromosome 1q21 and has been associated with five distinct pathologies, including Dunnigan-type familial partial lipodystrophy, a condition that is characterized by subcutaneous fat loss and is invariably associated with insulin resistance and diabetes. Since patients with MAD frequently have partial lipodystrophy and insulin resistance, we hypothesized that the disease may be caused by mutations in the LMNA gene. We analyzed five consanguineous Italian families and demonstrated linkage of MAD to chromosome 1q21, by use of homozygosity mapping. We then sequenced the LMNA gene and identified a homozygous missense mutation (R527H) that was shared by all affected patients. Patient skin fibroblasts showed nuclei that presented abnormal lamin A/C distribution and a dysmorphic envelope, thus demonstrating the pathogenic effect of the R527H LMNA mutation. 相似文献
9.
Altered resource allocation during seed development in Arabidopsis caused by the abi3 mutation 总被引:1,自引:0,他引:1
The regulation of whole-plant resource allocation during seed development in Arabidopsis thaliana was investigated by examining growth rate and partitioning of 14 CO2 in wild-type plants and those carrying the abi3 mutation. Plants carrying the abi3 mutation partitioned more resources into seed development than the wild type. The extra resources were available as a result of delayed senescence of the cauline leaves in the mutant. After supply of 14 CO2 at later stages of reproductive development differences in patterns of 14 C distribution between mutant and wild type were consistent with long-term changes in growth and allocation. The role of long-distance signals in the regulation of seed yield in Arabidopsis is discussed. 相似文献
10.
Both natural rewards and addictive substances have the ability to reinforce behaviors. It has been unclear whether identical neural pathways mediate the actions of both. In addition, little is known about these behaviors and the underlying neural mechanisms in a genetically tractable vertebrate, the zebrafish Danio rerio. Using a conditioned place preference paradigm, we demonstrate that wildtype zebrafish exhibit a robust preference for food as well as the opiate drug morphine that can be blocked by the opioid receptor antagonist naloxone. Moreover, we show that the too few mutant, which disrupts a conserved zinc finger-containing gene and exhibits a reduction of selective groups of dopaminergic and serotonergic neurons in the basal diencephalon, displays normal food preference but shows no preference for morphine. Pretreatment with dopamine receptor antagonists abolishes morphine preference in the wildtype. These studies demonstrate that zebrafish display measurable preference behavior for reward and show that the preference for natural reward and addictive drug is dissociable by a single-gene mutation that alters subregions of brain monoamine neurotransmitter systems. Future genetic analysis in zebrafish shall uncover further molecular and cellular mechanisms underlying the formation and function of neural circuitry that regulate opiate and food preference behavior. 相似文献
11.
12.
A girl with autosomal dominant hypophosphatemic rickets, presented with clinical, radiological and laboratory signs of rickets at the age of 11 months. She showed a good response to the treatment with low doses of oral phosphate and calcitriol. Surprisingly, she lost her renal phosphate wasting at the age of 8 years, indicating that the disturbed phosphate metabolism can be compensated by hormonal or other factors. 相似文献
13.
Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments 总被引:7,自引:0,他引:7
We have established a transgenic zebrafish line carrying a shuttle vector plasmid (pML4) for detecting mutagens in aquatic environments. The plasmid contains the rpsL gene of Escherichia coli as a mutational target gene, and the kanamycin-resistance gene for recovering the plasmid from the chromosomal DNA. To evaluate the system, we treated embryos of the transgenic fish with N-ethyl-N-nitrosourea (ENU), which induces a dose-dependent increase in the mutation frequency of the target gene. The mutation spectrum was consistent with the proposed mechanism of ENU mutagenesis. Similarly, treating the embryos with benzo[a]pyrene or 2-amino-3, 8-dimethylimidazo[4,5- f]quinoxaline, which are found in naturally polluted water, significantly increased the frequency of mutations in the target gene. 相似文献
14.
Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase 总被引:19,自引:0,他引:19 下载免费PDF全文
Irrthum A Karkkainen MJ Devriendt K Alitalo K Vikkula M 《American journal of human genetics》2000,67(2):295-301
Hereditary lymphedema is a chronic swelling of limbs due to dysfunction of lymphatic vessels. An autosomal dominant, congenital form of the disease, also known as "Milroy disease," has been mapped to the telomeric part of chromosome 5q, in the region 5q34-q35. This region contains a good candidate gene for the disease, VEGFR3 (FLT4), that encodes a receptor tyrosine kinase specific for lymphatic vessels. To clarify the role of VEGFR3 in the etiology of the disease, we have analyzed a family with hereditary lymphedema. We show linkage of the disease with markers in 5q34-q35, including a VEGFR3 intragenic polymorphism, and we describe an A-->G transition that cosegregates with the disease, corresponding to a histidine-to-arginine substitution in the catalytic loop of the protein. In addition, we show, by in vitro expression, that this mutation inhibits the autophosphorylation of the receptor. Thus, defective VEGFR3 signaling seems to be the cause of congenital hereditary lymphedema linked to 5q34-q35. 相似文献
15.
16.
Bontems F Baerlocher L Mehenni S Bahechar I Farinelli L Dosch R 《Biochemical and biophysical research communications》2011,405(3):373-376
Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. 相似文献
17.
List K Szabo R Wertz PW Segre J Haudenschild CC Kim SY Bugge TH 《The Journal of cell biology》2003,163(4):901-910
Profilaggrin is a large epidermal polyprotein that is proteolytically processed during keratinocyte differentiation to release multiple filaggrin monomer units as well as a calcium-binding regulatory NH2-terminal filaggrin S-100 protein. We show that epidermal deficiency of the transmembrane serine protease Matriptase/MT-SP1 perturbs lipid matrix formation, cornified envelope morphogenesis, and stratum corneum desquamation. Surprisingly, proteomic analysis of Matriptase/MT-SP1-deficient epidermis revealed the selective loss of both proteolytically processed filaggrin monomer units and the NH2-terminal filaggrin S-100 regulatory protein. This was associated with a profound accumulation of profilaggrin and aberrant profilaggrin-processing products in the stratum corneum. The data identify keratinocyte Matriptase/MT-SP1 as an essential component of the profilaggrin-processing pathway and a key regulator of terminal epidermal differentiation. 相似文献
18.
19.
Mordechai S Gradstein L Pasanen A Ofir R El Amour K Levy J Belfair N Lifshitz T Joshua S Narkis G Elbedour K Myllyharju J Birk OS 《American journal of human genetics》2011,(3):438-445
Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ~1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2. 相似文献