首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat hepatoma cells (Fu5AH) were studied as a model for the net delivery of apoE-free high-density lipoprotein (HDL) cholesterol to a cell. Incubating cells with HDL results in 1) a decrease in both media-free cholesterol and cholesteryl ester concentration; 2) decreased cell sterol synthesis; and 3) increased cell cholesteryl ester synthesis. HDL cholesteryl ester uptake is increased when cells are incubated for 18 hr in cholesterol poor media. Coincubation of 3H-cholesteryl ester-labeled low-density lipoprotein (LDL) with 50 microM chloroquine or 25 microM monensin results in a decrease in the cellular free cholesterol/cholesteryl ester (FC/CE) isotope ratio, indicating an inhibition in the conversion of cholesteryl ester to free cholesterol. In contrast, chloroquine and monensin do not alter the cellular FC/CE isotope ratio for 3H-CE HDL. This evidence indicates that acidic lysosomal cholesteryl ester hydrolase does not account for the hydrolysis of HDL-CE. Free cholesterol generated from 3H-cholesteryl ester of both LDL and HDL is reesterified intracellularly. At higher HDL concentrations (above 50 micrograms/ml) HDL cholesteryl ester hydrolysis is sensitive to chloroquine. We propose that an extralysosomal pathway is operating in the metabolism of HDL cholesterol and that at higher HDL concentrations a lysosomal pathway may be functioning in addition to an extralysosomal pathway.  相似文献   

2.
Receptor-mediated binding and metabolism of low-density lipoproteins (LDL) in cultured human vascular smooth-muscle cells and skin fibroblasts are altered by increased cellular cyclic AMP concentrations. However, the LDL receptor does not respond to changes in cyclic AMP concentration in a simple manner. The activation of adenylate cyclase with forskolin, or the addition of membrane-permeant cyclic AMP analogues, initially decreases the expression of the LDL receptor, but is followed by a substantial increase in receptor expression after 24 h. This increase does not occur in the presence of inhibitors of RNA or protein synthesis, and is due to doubling of the Bmax. of the LDL receptor, without alteration of its affinity for LDL. By contrast, elevation of cyclic AMP concentration by inhibition of phosphodiesterases results in decreased receptor expression throughout the 24 h period. These two response patterns are reproducible phenomena, consistently observed in low-passaged cells derived from seven unrelated individuals.  相似文献   

3.
A 24h pretreatment of the human hepatoma cell line HepG2 with dibutyryl cyclic AMP in the presence of theophylline induced a dose dependent decrease in low density lipoprotein binding, uptake and degradation. This effect is most likely due to a reduction of the LDL receptor number. Sterol synthesis from sodium acetate is markedly inhibited, either in the presence or absence of LDL, whereas synthesis from mevalonic acid is unchanged. Cyclic AMP also induced a decrease in hydroxy methyl glutaryl coenzyme A reductase activity. These effects of cyclic AMP might be involved in some hormonal regulation of the LDL pathway and cholesterol metabolism in the liver.  相似文献   

4.
Granulosa cells aspirated from medium-sized porcine ovarian follicles (3-5 mm) in short-term incubation responded to the addition of both low-density lipoprotein (LDL) and high-density lipoprotein (HDL) with increased accumulation of progesterone. HDL was more potent than LDL in enhancing progesterone secretion. When granulosa cells were cultured under serum-free conditions for 72 h, HDL but not LDL exhibited a dose-dependent enhancement of progesterone secretion. Addition of insulin to the cells greatly potentiated the stimulatory effect of LDL on progesterone accumulation, while the response to HDL was only slightly increased. Granulosa cells in culture degraded LDL but not HDL. Addition of insulin enhanced LDL degradation. Exposure of cells in culture to chloroquine, an inhibitor of lysosomal function, completely blocked LDL degradation and LDL-induced stimulation of steroidogenesis. The stimulatory effect of HDL was not affected by chloroquine. We interpret these findings to indicate that granulosa cells derive cholesterol from LDL by means of lysosomal degradation, which is not required for use of cholesterol from HDL. Monensin, a carboxylic ionophore that interrupts recycling of LDL receptors, prevented LDL-enhanced progesterone accumulation but not HDL-induced stimulation. This provides evidence that HDL-induced stimulation of steroidogenesis does not involve LDL receptors. We conclude that HDL present in follicular fluid is capable of providing cholesterol to granulosa cells for steroidogenesis. The stimulatory effect of HDL is not due to the presence of apoprotein E, an HDL component that binds to the LDL receptor. A unique HDL pathway that does not involve LDL receptors and lysosomal degradation may operate in porcine granulosa cells.  相似文献   

5.
LDL modified by incubation with platelet secretory products caused cholesterol accumulation and stimulation of cholesterol esterification in mouse peritoneal macrophages. Its uptake by the macrophages was a receptor-mediated process, not susceptible to competition by acetyl-LDL or polyanions suggesting independence of the scavenger receptor. Stimulation of the esterification process in macrophages by this modified LDL was inhibited by the lysosomal inhibitor chloroquine, indicating requirement for cellular uptake and lysosomal hydrolysis of the lipoprotein. Within the cell, the modified LDL inhibited cellular biosynthesis of triglycerides in a manner similar to the action of acetyl-LDL but different to the effect of native LDL. In the presence of HDL, acting in the medium as an acceptor for cholesterol, a low rate of cholesterol efflux from cells incubated with this modified LDL as well as with acetyl-LDL was demonstrated. A small reduction in cholesteryl ester synthesis was found in these cells, compared to a 60% reduction in cells incubated with native LDL. Thus it was demonstrated that LDL modified by platelet secretory products could induce macrophage cholesterol accumulation even though it was recognized and taken up via the regulatory LDL receptor.  相似文献   

6.
T Pacuszka  P H Fishman 《Biochemistry》1992,31(20):4773-4778
We previously reported that when the oligosaccharide of ganglioside GM1 is covalently attached to cell surface proteins of GM1-deficient rat glioma C6 cells, the cells bind large amounts of cholera toxin (CT) but their cAMP response to CT is not enhanced [Pacuszka, T., & Fishman, P. H. (1990) J. Biol. Chem. 265, 7673-7668]. We now report that when such cells were exposed to CT in the presence of chloroquine, an acidotropic agent, they accumulated cAMP. This raised the possibility that CT bound to cell surface "neoganglioproteins" may be entering the cells through a different pathway from that of CT-bound GM1. To further explore this phenomenon, we covalently attached GM1 oligosaccharide to human transferrin (Tf). The modified protein (GM1OS-Tf) bound with high affinity to Tf receptors on HeLa cells and increased the binding of CT to the cells. The bound CT, however, was unable to activate adenylyl cyclase as measured by cyclic AMP accumulation. By contrast, treatment of HeLa cells with GM1 increased both CT binding and stimulation of cyclic AMP accumulation. Control cells and cells treated with either GM1 or GM1OS-Tf were exposed to CT in the presence of chloroquine. Whereas chloroquine had little or no effect on the response of control or GM1-treated cells to CT, it made the cells treated with GM1OS-Tf responsive to the toxin. Our results indicate that CT bound to its natural receptor GM1 enters the cells through a pathway different from that of toxin bound to neoganglioproteins.  相似文献   

7.
The mechanism for the regulation of 12-hydroxyeicosatetraenoic acid (12-HETE) production by cholesterol-rich macrophages was investigated. beta-VLDL and acetyl-LDL, lipoproteins which result in cholesterol accumulation in macrophages, stimulated 12-HETE secretion. Lipoproteins which do not induce cholesterol accumulation, such as low- and high-density lipoproteins, did not. Cell-free homogenates from cholesterol-rich macrophages had significantly more 12-lipoxygenase activity than homogenates from unmodified cells. Preincubating homogenates prepared from unmodified macrophages with acetyl-LDL, LDL or multilamellar liposomes containing total lipids from acetyl-LDL but not apoproteins significantly increased 12-lipoxygenase activity. This stimulatory effect was caused by the phospholipid moiety of the lipoprotein. 12-HETE synthesis was not increased in macrophages enriched 6-fold in unesterified cholesterol. Acetyl-LDL stimulated 12-HETE synthesis in macrophages in which cholesteryl ester accumulation was prevented by inhibiting acylcoenzyme A:cholesterol acyltransferase activity. When binding of acetyl-LDL to its receptor was decreased by increasing concentrations of dextran sulfate, or when lysosomal metabolism of the lipoprotein was prevented by chloroquine, 12-HETE production significantly decreased. Moreover, the combination of inhibiting acetyl-LDL binding and degradation completely blocked the stimulation of 12-HETE synthesis by acetyl-LDL. The data indicate that acetyl-LDL must enter the macrophage and be partially degraded to regulate 12-HETE synthesis. The regulation is independent of cholesterol accumulation but is related to the entering lipoprotein phospholipid.  相似文献   

8.
Selective modification of the tetrahydrobiopterin levels in cultured chromaffin cells were followed by changes in the rate of tyrosine hydroxylation. Addition of sepiapterin, an intermediate on the salvage pathway for tetrahydrobiopterin synthesis, rapidly increased intracellular levels of tetrahydrobiopterin and elevated the rate of tyrosine hydroxylation in the intact cell. Tyrosine hydroxylation was also enhanced when tetrahydrobiopterin was directly added to the incubation medium of intact cells. When the cultured chromaffin cells were treated for 72 h with N-acetylserotonin, an inhibitor of sepiapterin reductase, tetrahydrobiopterin content and the rate of tyrosine hydroxylation were decreased. Addition of sepiapterin or N-acetylserotonin had no consistent effect on total extractable tyrosine hydroxylase activity or on catecholamine content in the cultured chromaffin cells. Three-day treatment of chromaffin cell cultures with compounds that increase levels of cyclic AMP (forskolin, cholera toxin, theophylline, dibutyryl- and 8-bromo cyclic AMP) increased total extractable tyrosine hydroxylase activity and GTP-cyclohydrolase, the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Tetrahydrobiopterin levels and intact cell tyrosine hydroxylation were markedly increased after 8-bromo cyclic AMP. The increase in GTP-cyclohydrolase and tetrahydrobiopterin induced by 8-bromo cyclic AMP was blocked by the protein synthesis inhibitor cycloheximide. Agents that deplete cellular catecholamines (reserpine, tetrabenazine, and brocresine) increased both total tyrosine hydroxylase and GTP-cyclohydrolase activities, although treating the cultures with reserpine or tetrabenazine resulted in no change in cellular levels of cyclic AMP. Brocresine and tetrabenazine increased tetrahydrobiopterin levels, but the addition of reserpine to the cultures decreased catecholamine and tetrahydrobiopterin content and resulted in a decreased rate of intact cell tyrosine hydroxylation in spite of the increased activity of the total extractable enzyme. These data indicate that in cultured chromaffin cells GTP-cyclohydrolase activity like tyrosine hydroxylase activity is regulated by both cyclic AMP-dependent and cyclic AMP-independent mechanisms and that the intracellular level of tetrahydrobiopterin is one of the many factors that control the rate of tyrosine hydroxylation.  相似文献   

9.
The effect of the adenylate cyclase activator forskolin on bone resorption and cyclic AMP accumulation was studied in an organ-culture system by using calvarial bones from 6-7-day-old mice. Forskolin caused a rapid and fully reversible increase of cyclic AMP, which was maximal after 20-30 min. The phosphodiesterase inhibitor rolipram (30 mumol/l), enhanced the cyclic AMP response to forskolin (50 mumol/l) from a net cyclic AMP response of 1234 +/- 154 pmol/bone to 2854 +/- 193 pmol/bone (mean +/- S.E.M., n = 4). The cyclic AMP level in bones treated with forskolin (30 mumol/l) was significantly increased after 24 h of culture. Forskolin, at and above 0.3 mumol/l, in the absence and the presence of rolipram (30 mumol/l), caused a dose-dependent cyclic AMP accumulation with an calculated EC50 (concentration producing half-maximal stimulation) value at 8.3 mumol/l. In 24 h cultures forskolin inhibited spontaneous and PTH (parathyroid hormone)-stimulated 45Ca release with calculated IC50 (concentration producing half-maximal inhibition) values at 1.6 and 0.6 mumol/l respectively. Forskolin significantly inhibited the release of 3H from [3H]proline-labelled bones stimulated by PTH (10 nmol/l). The inhibitory effect by forskolin on PTH-stimulated 45Ca release was significant already after 3 h of culture. In 24 h cultures forskolin (3 mumol/l) significantly inhibited 45Ca release also from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxycholecalciferol (0.1 mumol/l). The inhibitory effect of forskolin on spontaneous and PTH-stimulated 45Ca release was transient. A dose-dependent stimulation of basal 45Ca release was seen in 120 h cultures, at and above 3 nmol of forskolin/l, with a calculated EC50 value at 16 nmol/l. The stimulatory effect of forskolin (1 mumol/l) could be inhibited by calcitonin (0.1 unit/ml), but was insensitive to indomethacin (1 mumol/l). Forskolin increased the release of 3H from [3H]proline-labelled bones cultured for 120 h and decreased the amount of hydroxyproline in bones after culture. Forskolin inhibited PTH-stimulated release of Ca2+, Pi, beta-glucuronidase and beta-N-acetylglucosaminidase in 24 h cultures. In 120 h cultures forskolin stimulated the basal release of minerals and lysosomal enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Inhibition of prostaglandin synthesis by the drug indomethacin suppresses the synthesis of the cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), and leads to a metabolic state comparable to type II diabetes. It was of interest whether prostaglandin-deficiency likewise causes sensitization of adenylyl cyclase, as this has been reported for the diabetic state. In liver plasma membranes of indomethacin-treated male rats, basal and forskolin-stimulated cyclic AMP synthesis remained unchanged when compared to untreated control rats. In control rats, stimulation of cyclic AMP synthesis by fluoride (2.2-fold) or glucagon (3.5-fold) was much lower than stimulation by forskolin (6.6-fold). In contrast, in indomethacin-treated rats, stimulation of cAMP synthesis by fluoride (4.6-fold) or glucagon (5.2-fold) nearly matched the stimulation by forskolin (6.4-fold). The level of alpha1-adrenergic receptors was slightly reduced, from 450 to 320 fmol/mg protein, by the indomethacin treatment. Independent of the treatment by indomethacin, stimulation of cyclic AMP synthesis by adrenaline failed, in agreement with the low density of adrenergic beta-receptors. In conclusion, PGE deficiency sensitizes adenylyl cyclase in rat liver for G protein-coupled receptors (glucagon) and also for fluoride.  相似文献   

11.
The possible role of protein kinase C in avian granulosa cell steroidogenesis was studied in vitro by examining the effect of tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on progesterone synthesis in chicken granulosa cells in short-term (3h) incubations. TPA (1-100 nM) caused a marginal but nonsignificant increase in progesterone production in granulosa cells isolated from the largest preovulatory follicle. When incubated in combination with luteinizing hormone (5-100 ng/mL), TPA suppressed the stimulatory effects of submaximally and maximally effective doses of the gonadotropin in a concentration-related manner. Similarly, the phorbol ester inhibited the steroidogenic responses to forskolin and dibutyryl cyclic AMP. By comparison, TPA had no appreciable effect on the metabolism of exogenous pregnenolone substrate to progesterone. Our data indicate that the tumor-promoting phorbol ester influences steroidogenic steps distal to cyclic AMP generation but at or before pregnenolone formation, and that protein kinase C may be a negative regulator of steroid biosynthesis in chicken granulosa cells.  相似文献   

12.
Cyclic AMP is a key regulator of melatonin production in the chick pineal gland. Agents that raise cyclic AMP levels (such as forskolin), or cyclic AMP analogues (such as 8-bromocyclic AMP), increase melatonin synthesis and release, whereas agents that lower cyclic AMP levels (including light) decrease melatonin synthesis and release. A circadian oscillator in these cells also raises and lowers melatonin output. We have been investigating the relationships between cyclic AMP and the circadian pacemaker in the regulation of melatonin production. In the chick pineal (unlike certain neuronal systems), the weight of the evidence indicates that cyclic AMP is not on an entrainment pathway to the circadian pacemaker. Instead, cyclic AMP appears to act downstream from the pacemaker. The pacemaker might itself act directly through cyclic AMP, regulating melatonin content by raising and lowering cyclic AMP levels. If this were the case, and if the effects of cyclic AMP levels on melatonin output are saturable (as they must be), then, in the face of such saturating levels of cyclic AMP, the pacemaker should no longer raise or lower melatonin output. To test this prediction, maximally effective concentrations of forskolin and 8-bromocyclic AMP were determined. Both agents markedly increased melatonin output. After 36 hr, cells were refractory to additional stimulation of melatonin output by addition of both agents together, or by higher concentrations of forskolin (although cyclic AMP levels could still be raised further). Nonetheless, the circadian pacemaker continued to raise and lower melatonin output: The rhythm persisted in the face of saturating levels of cyclic AMP. It is therefore suggested that the circadian pacemaker in chick pineal cells acts with, not through, cyclic AMP to regulate melatonin synthesis. Cyclic AMP and the pacemaker act synergistically to regulate serotonin N-acetyltransferase activity and the melatonin rhythm, with cyclic AMP mediating acute effects and amplitude regulation.  相似文献   

13.
C Decourt  B Lahlou 《Life sciences》1987,41(12):1517-1524
The steroidogenic response to angiotensin II (AII) has been studied in freshwater trout, using a perifusion technique applied to the "head kidneys". AII used alone had no effect on cortisol release. When associated with forskolin or ACTH, it enhanced the stimulation response to these agents. This potentiation was not related (at least directly) to extracellular and intracellular calcium while arachidonate metabolism remained a probable intermediate in the expression of AII action. Experiments using quinacrine and indomethacin suggested that prostaglandin synthesis is involved to mediate AII effect at a step subsequent to cyclic AMP production. These data provide direct evidence that the major components regulating corticosteroid production in teleost fishes are ACTH and AII and that they operate synergistically.  相似文献   

14.
We have studied the effect of increased intracellular levels of cyclic AMP on the growth response to platelet-derived growth factor (PDGF) of human foreskin fibroblasts in culture. It was found that forskolin, a potent stimulator of adenylate cyclase activity, inhibits the stimulatory effect of PDGF on 3H-thymidine incorporation with a dose dependence similar to that observed with regard to cyclic AMP formation. A time-course study indicated that forskolin has no effect on ongoing DNA synthesis but affects events in the prereplicative phase. The cell-cycle block induced by forskolin was found to be reversible; after removal of the drug, DNA synthesis was initiated after a lag period, similar to that of the prereplicative phase of control cells. Forskolin had no effect on PDGF binding, receptor autophosphorylation, or c-fos mRNA expression. However, a reduction in PDGF-induced c-myc mRNA expression was observed in cultures given forskolin. Forskolin was also found to have a marked stimulatory effect on the expression of interferon-beta 2 mRNA expression. However, we were unable to demonstrate that the growth-inhibitory effect of forskolin is mediated by interferon-beta. In conclusion, an increase in cAMP levels leads to a reversible inhibition of PDGF-induced DNA synthesis in human fibroblasts, which may be related to an inhibition of c-myc mRNA expression.  相似文献   

15.
Abstract: As cerebral neurons express the dopamine D1 receptor positively coupled with adenylyl cyclase, together with the D3 receptor, we have investigated in a heterologous cell expression system the relationships of cyclic AMP with D3 receptor signaling pathways. In NG108-15 cells transfected with the human D3 receptor cDNA, dopamine, quinpirole, and other dopamine receptor agonists inhibited cyclic AMP accumulation induced by forskolin. Quinpirole also increased mitogenesis, assessed by measuring [3H]thymidine incorporation. This effect was blocked partially by genistein, a tyrosine kinase inhibitor. Forskolin enhanced by 50–75% the quinpirole-induced [3H]thymidine incorporation. This effect was maximal with 100 n M forskolin, occurred after 6–16 h, was reproduced by cyclic AMP-permeable analogues, and was blocked by a protein kinase A inhibitor. Forskolin increased D3 receptor expression up to 135%, but only after 16 h and at concentrations of >1 µ M . Thus, in this cell line, the D3 receptor uses two distinct signaling pathways: it efficiently inhibits adenylyl cyclase and induces mitogenesis, an effect possibly involving tyrosine phosphorylation. Activation of the cyclic AMP cascade potentiates the D3 receptor-mediated mitogenic response, through phosphorylation by a cyclic AMP-dependent kinase of a yet unidentified component. Hence, transduction of the D3 receptor can involve both opposite and synergistic interactions with cyclic AMP.  相似文献   

16.
Activation of protein kinase C (PKC) bu phorbol esters (TPA) results in a modification of the cyclic AMP system leading to either attenuation or amplification of the cyclic AMP signal. In the non-neoplastic T51B rat live cell line, TPA, when added to intact cells, had no effect on the basal level of cyclic AMP synthesis but caused a 1.5 fold amplification of the stimulation induced by β-adrenergic agents, cholera toxin and forskolin. The effect appeared to be mediated by PKC since diacylglycerols caused the same amplification as did TPA while inactive phorbol esters were without effect. Phosphorylation of Gs or the catalytic subunit of adenylate cyclase by PKC is likely to be responsible for the enhancement of cyclic AMP synthesis. TPA also caused translocation of PKC; however, the time course of the translocation was loner than the time course of the enhancement of adenylate cyclase activity. Thus, the ability of TPA to amplify cyclic AMP synthesis is probably mediated by activation of PKC that is already present in the membrane.  相似文献   

17.
Low density lipoprotein (LDL)-carried cholesterol is a primary substrate for steroid hormone synthesis by luteinized human granulosa cells. Chorionic gonadotropin and 8-bromo-cAMP both increase LDL receptor levels in granulosa cells by stimulating accumulation of the receptor mRNA. LDL and 25-hydroxycholesterol reduce LDL receptor expression, but this suppressive effect is partially overcome by 8-bromo-cAMP. Using fusion gene constructs containing the LDL receptor gene promoter transfected into JEG-3 cells, a cyclic AMP responsive enhancer could not be identified in the LDL receptor gene upstream promoter in transfection studies. We suggest that the LDL receptor gene in human steroidogenic cells is under negative control by a sterol effector, but that a cyclic AMP triggered process overcomes, to some extent, the sterol-mediated suppression. The detailed mechanisms by which sterol and cyclic AMP modulate LDL receptor gene expression remain to be elucidated.  相似文献   

18.
Cholesteryl esters are the major lipids that accumulate in arteries during atherogenesis. The mechanisms responsible for this lipid accretion have not been completely defined. Our previous experiments have shown that prostacyclin (PGI2) enhances cholesteryl ester catabolism by increasing cyclic AMP in cultured arterial smooth muscle cells. However, PGI2 is rapidly degraded under physiologic conditions and endogenous levels of PGI2 in the human circulation are extremely low. These findings suggest that it is not a circulating hormone. We tested the hypothesis that stable PGI2 metabolites alter cholesteryl ester metabolism and cellular lipid accumulation. Ten to 100 nM dinor-6-keto PGF1 alpha, 13,14-dihydro-6,15-diketo PGF1 alpha, and 6,15-diketo PGF1 alpha increased cyclic AMP levels significantly two- to threefold with a concomitant enhancement of both lysosomal and cytoplasmic cholesteryl ester hydrolytic activities. Cholesteryl ester synthesis was unchanged by the PGI2 metabolites. When cyclic AMP concentrations were maintained at basal levels by an adenylate cyclase inhibitor, no effect on cholesteryl ester hydrolysis was observed following addition of PGI2 metabolites to the cells. Furthermore, addition of PGI2 metabolites during a 1-week culture period reduced free and esterified cholesterol by 50%. These data suggest that PGI2 metabolites: 1) decrease intracellular cholesterol accumulation by increasing cholesteryl ester catabolism; 2) act via enhancement of cyclic AMP; and, 3) may represent circulating regulators of arterial cholesteryl ester metabolism.  相似文献   

19.
Iodide, a substrate of thyroid metabolism, and acetylcholine depress cyclic AMP intracellular content and secretion in dog thyroid slices under TSH stimulation. A direct or indirect pseudocompetitive effect at the level of TSH receptor interaction has been rejected. Iodide and carbachol, both inhibited cyclic AMP accumulation in TSH stimulated dog thyroid slices but only the effect of carbachol was suppressed in the presence of isobutylmethylanthine. Ro 20-1724 did not relieve either inhibitory effect. Carbachol greatly enhanced cyclic AMP disposal in TSH prestimulated slices after the cut off of hormone action by a trypsin treatment. This effect was also suppressed by isobutylmethylxanthine but not by Ro 20-1724. No action of iodide could be evidenced on cyclic AMP disposal in similar slices, although a clear effect after the same time of iodide action was observed on cyclic AMP accumulation. Neither carbachol, nor iodide depresses ATP levels in these slices. The data suggest that carbachol exerts its action through an activation of cyclic AMP disappearance probably by an activation of cyclic AMP phosphodiesterase and that iodide, through an oxidized intermediate, experts its inhibitory effect at the level of cyclic AMP synthesis.  相似文献   

20.
T Lin 《Life sciences》1983,33(25):2465-2471
Forskolin has a potent stimulatory effect on both cyclic AMP and testosterone formation by purified Leydig cells. Forskolin also markedly enhanced hCG-induced cyclic AMP formation, but maximal testosterone production remained unaltered. Cyclic AMP and testosterone responses of desensitized Leydig cells to in vitro hCG stimulation were completely lost. Cholera toxin-induced cyclic AMP formation was also reduced. However, forskolin was able to stimulate a 3.4-fold increment in cyclic AMP formation and potentiate hCG-induced cyclic AMP response by desensitized Leydig cells. The absolute cyclic AMP levels were significantly lower than in normal control cells. These results suggest that the catalytic unit remains intact in desensitized Leydig cells and the coupling between N-protein and catalytic unit is impaired. The N-protein is required for full expression of maximal response of Leydig cells to forskolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号