首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of extracellular matrix proteins, such as type IV collagen and fibronectin, by mesangial cells contributes to progressive glomerulosclerosis. In this study, the ability of vasopressin (AVP), which causes mesangial cell proliferation and hypertrophy, to stimulate type IV collagen production by cultured human mesangial cells was examined using an enzyme-linked immunosorbent assay. AVP induced a concentration-dependent increase in the production of type IV collagen and this effect was potently and concentration-dependently inhibited by AVP V1A receptor antagonists, including YM218. AVP also induced a concentration-dependent increase in transforming growth factor (TGF)-β secretion by human mesangial cells and this effect was inhibited by V1A receptor antagonists. Furthermore, TGF-β also induced an increase in the production of type IV collagen; the AVP-enhanced production of type IV collagen was inhibited by an anti-TGF-β antibody. These findings indicate that AVP stimulates synthesis of type IV collagen by cultured human mesangial cells through the induction of TGF-β synthesis mediated by V1A receptors; consequently, AVP contributes to glomerular remodeling and extracellular matrix accumulation observed in glomerular diseases.  相似文献   

2.
Vascular endothelial cells derived from adult bovine aortic arch can be grown in two ways, either in the presence or absence of fibroblast growth factor. The types of collagen produced by cultures under these two conditions have been compared. In the presence of fibroblast growth factor, cells grow in an orderly fashion, express their normal phenotype and synthesize primarily type III collagen plus collagens types IV and V at a ratio of 10:1:3. Cultures grown in the absence of the factor lose their orderly pattern of growth, lose polarity and normal phenotypic expression. They devote twice the proportion of total protein-synthesizing capacity to collagen, and now synthesize type I in addition to the other collagen types. The ratio of collagen types I:III:IV:V is approximately 30:70:1:13. The kinds of type V collagen chains expressed are also altered. Fibroblast growth factor appears to modulate collagen synthesis, the major component of the extracellular matrix, and indirectly modulates the phenotypic expression of cultured vascular endothelial cells. In atherosclerosis, type I collagen is found in association with the intimal layer. The disorderly growth and the abnormal production of type I collagen by these vascular endothelial cells cultured in the absence of fibroblast growth factor is a model for a number of pathological situations including atherosclerotic plaque formation.  相似文献   

3.
The effects of epidermal growth factor (EGF) on granulation-tissue formation and collagen-gene expression were studied in experimental sponge-induced granulomas in rats. After daily administration of 5 micrograms of EGF into the sponge, total RNA was extracted from the ingrown granulation tissue at days 4 and 7 and analysed by Northern hybridization for the contents of mRNAs for types I and III procollagens. EGF treatment increased procollagen mRNA, particularly at day 4. To determine whether this elevation was due to increased proliferation of collagen-producing fibroblasts or to activation of collagen-gene expression in these cells, fibroblast cultures were started from granulation tissue and treated with EGF. These experiments confirmed that EGF is a potent mitogen for granuloma fibroblasts in a dose-dependent manner. The effect of EGF treatment on radioactive hydroxyproline production in cultured cells was inhibitory. The decreased rate of collagen synthesis was also indicated by decreased amounts of procollagen mRNAs. The results suggest that the stimulation of wound healing and collagen production by EGF is due to increased fibroblast proliferation, and not to increased expression of type I and III procollagen genes.  相似文献   

4.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

5.
Quantification of collagen synthesis by cultured human glomerular cells   总被引:4,自引:0,他引:4  
This study examines the amount of total collagen and its different fractions synthesized by cultured human glomerular epithelial and mesangial cells. Two quantitative techniques were used, namely estimation of proline (Pro) plus hydroxyproline (Hyp) present in the collagenase-sensitive proteins and ELISA or RIA of the different types of collagen. In addition, the pattern of collagen synthesis for both cell types was further examined using immunofluorescence methods and polyacrylamide gel electrophoresis. Glomerular epithelial cells synthesized mainly type IV collagen and it was, for the better part, cell-associated. Mesangial cells synthesized approx. 4-times more collagen than epithelial cells. Type I collagen was predominant, but there were also type IV and III collagens. Secreted and cell-associated collagens were present in roughly equivalent amounts. In both cell lines 10-14% of the newly synthesized collagen had been degraded within the cells. These results provide quantitative data on collagen synthesis by human glomerular cells in vitro and represent the first necessary stage before studying which factors mediate the development of glomerular sclerosis.  相似文献   

6.
Mesangial matrix expansion is an early lesion leading to glomeruloclerosis and chronic renal diseases. A beneficial effect is achieved with angiotensin I-converting enzyme inhibitors (ACEI), which also favor bradykinin (BK) B2 receptor (B2R) activation. To define the underlying mechanism, we hypothesized that B2R activation could be a negative regulator of collagen synthesis in mesangial cells (MC). We investigated the effect of BK on collagen synthesis and signaling in MC. Inflammation was evaluated by intercellular adhesion molecule-1 (ICAM-1) expression. BK inhibited collagen I and IV synthesis stimulated by high glucose, epithelial growth factor (EGF), and transforming growth factor-β (TGF-β) but did not alter ICAM-1. Inhibition of collagen synthesis was B2R but not B1R mediated. PKC or phosphatidylinositol 3-kinase (PI3K) inhibitors mimicked the BK effect. B2R activation inhibited TGF-β- and EGF-induced Erk1/2, Smad2/3, Akt S473, and EGFR phosphorylation. A phosphatase inhibitor prevented BK effects. The in vivo impact of B2R on mesangial matrix expansion was assessed in streptozotocin-diabetic rodents. Deletion of B2R increased mesangial matrix expansion and albuminuria in diabetic mice. In diabetic rats, matrix expansion and albuminuria were prevented by ACEI but not by ACEI and B2R antagonist cotreatment. Consistently, the lowered BK content of diabetic glomeruli was restored by ACEI. In conclusion, deficient B2R activation aggravated mesangial matrix expansion in diabetic rodents whereas B2R activation reduced MC collagen synthesis by a mechanism targeting Erk1/2 and Akt, common pathways activated by EGF and TGF-β. Taken together, the data support the hypothesis of an antifibrosing effect of B2R activation.  相似文献   

7.
The pathogenesis of glomerular scarring is multifactional; recent evidence suggests that transforming growth factor β (TGFβ), a pleiotropic cicatricial mediator, may promote mesangial sclerosis by enhancing the production of extracellular matrix proteins. We studied the effect of TGFβ1 and TFGβ2 on collagen type IV and fibronectin (FN) synthesis in human glomerular mesangial cells in culture (GMC). Two hours after addition of TGFβ, an up to twofold increase in abundance of collagen type IV mRNA was found, which further increased up to fivefold within 24 h. Addition of cycloheximide did not inhibit the TGFβ effect, but caused by itself an up to twofold increase in the abundance of collagen type IV mRNA after 2 h. Together with collagen mRNA, the mRNA for FN and for platelet-derived growth factor (PDGF) was also enhanced. PDGF was found to enhance abundance of the collagen type IV and fibronectin mRNA in GMC. A neutralizing antibody to PDGF or a PDGF-antisense oligonucleotide partly inhibited the TGFβ-induced increase of collagen type IV mRNA, suggesting that TGFβ can affect the collagen type IV synthesis not only directly but also indirectly via the synthesis of PDGF. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
Adenosine (ADO) is an intermediary metabolite of adenosine trisphosphate degradation and a vasoactive mediator. We showed previously that ADO induces contraction and proliferation in rat mesangial cells by a mechanism involving A1 and A2 receptors. The studies concerning the effect of ADO on extracellular matrix (ECM) accumulation in mesangial cells are scarce. The purpose of our study was to evaluate the effect of ADO and the effect of the selective stimulation of A1 and A2 ADO receptors on the expression of ECM components fibronectin and collagen type I, in human and rat renal mesangial cells. Cultured human and rat renal mesangial cells were subjected to selective stimulation of A1 and A2 ADO receptors for 24 and 48 h. Fibronectin and collagen type I expression was evaluated by Western blot; total collagen synthesis was measured by [3H]-proline incorporation into collagen proteins. ADO, A1 and A2 receptor stimulation induce increases in fibronectin expression in rat mesangial cells, and A1 receptor stimulation partially inhibits fibronectin expression in serum-stimulated rat mesangial cells, without any effect in human mesangial cells. A2 receptor stimulation reduces collagen type I expression in serum-stimulated mesangial cells. Neither ADO nor A1 or A2 receptor stimulation induce significant changes in total collagen synthesis. These data suggest that ADO is not a major regulator of ECM synthesis in rat and human mesangial cells.  相似文献   

10.
Advanced glycation end products (AGEs) appear to contribute to the diabetic complications. This study reports the inhibitory effect of OPB-9195 (OPB), an inhibitor of AGEs formation, and the role of a collagen-specific molecular chaperone, a 47-kDa heat shock protein (HSP47) in diabetic nephropathy. Transgenic mice carrying nitric-oxide synthase cDNA fused with insulin promoter (iNOSTg) leads to diabetes mellitus. The iNOSTg mice at 6 months of age represented diffuse glomerulosclerosis, and the expression of HSP47 was markedly increased in the mesangial area in parallel with increased expression of types I and IV collagens. OPB treatment ameliorated glomerulosclerosis in the iNOSTg mice associated with the decreased expression of HSP47 and types I and IV collagens. The expression of transforming growth factor-beta (TGF-beta) was increased in glomeruli of iNOSTg mice and decreased after treatment with OPB. To confirm these mechanisms, cultured mesangial cells were stimulated with AGEs. AGEs significantly increased the expression of HSP47, type IV collagen, and TGF-beta mRNA. Neutralizing antibody for TGF-beta inhibited the overexpression of both HSP47 and type IV collagen in vitro. In conclusion, AGEs increase the expression of HSP47 in association with collagens, both in vivo and in vitro. The processes may be mediated by TGF-beta.  相似文献   

11.
12.
In vivo mammary epithelial cells rest upon a basement membrane composed in part of type IV collagen which is synthesized by these cells. In this study, basement membrane collagen is shown to be selectively recognized by normal mammary ducts and alveoli for attachment and growth when compared to the types of collagen derived from stroma (types I or III) or cartilage (type II). Cell attachment and growth on type I collagen is inhibited by the proline analogue, cis-hydroxyproline, which blocks normal collagen production. These effects of cis-hydroxyproline are not apparent when a basement membrane collagen substratum is provided. Unlike normal mammary epithelium, mammary fibroblasts show little preference for the collagen to which they will attach. A requirement of type IV collagen synthesis for normal mammary epithelial cell attachment and growth on stromal collagen in vitro may have significance in vivo where a basement membrane scaffold may be necessary for normal mammary morphogenesis and growth.  相似文献   

13.
The present study was undertaken to investigate the effect of epidermal growth factor (EGF) on the biosynthetic activity of skin fibroblasts from donors of varying age and the modulation of their response to this growth factor by culture in a three-dimensional extracellular matrix. When cultured in monolayer on plastic or at the surface of a collagen gel, EGF specifically inhibited collagen synthesis whatever the age of the donor (from 17 to 84 years, n = 11). This inhibition was paralleled by a significant decrease in the steady-state level of procollagen type I mRNAs. When embedded in a three-dimensional floating collagen lattice, EGF stimulated the non-collagen protein (NCP) synthesis in fibroblasts from younger donors (5 out of 6) while fibroblasts from the older ones were not affected. Collagen production by fibroblasts from younger donors was not inhibited as in monolayer (some being even stimulated) while that of the older donors was inhibited as observed in monolayer. The steady-state level of procollagen type I mRNA was not modified by EGF in the three-dimensional culture. No significant difference was observed in the affinity and the number of EGF receptors of the fibroblasts on plastic or embedded in a collagen lattice between young and aged donors. Our results suggest that the environment of the cells can modulate the reactivity to EGF and reveal differences related to in vivo aging.  相似文献   

14.
The study was undertaken to examine the effects of C-peptide on glomerular volume (V(GLOM)), mesangial matrix synthesis, and degradation in streptozotocin (STZ)-diabetic rats with poor or moderate glycemic control. Series 1 (poor glycemic control) included groups of healthy rats, hyperglycemic rats, diabetic insulin-treated rats and diabetic C-peptide-treated rats. Series 2 (moderate glycemic control) included groups of healthy rats, diabetic insulin-treated rats, diabetic insulin- and C-peptide-treated rats. After 8 weeks, the left kidney was excised for evaluation of V(GLOM) and mesangial matrix area via light microscopy. Mesangial cells were cultured for 48 h and type IV collagen expression and matrix metalloproteinase (MMP)-2 expression were measured by ELISA and RT-PCR. The results indicated that in Series 1, C-peptide administration suppressed the diabetes-induced increase in the V(GLOM) and the mesangial matrix area. In Series 2, C-peptide administration resulted in a similar decrease in the V(GLOM) and a greater decrease in the mesangial matrix area when compared with insulin therapy alone. Moreover, C-peptide (300 nM) completely inhibited the glucose-induced increase of the collagen IV mRNA expression and protein concentration in mesangial cells cultured in 30 mM glucose medium. MMP-2 mRNA expression was not influenced by C-peptide. In conclusion, C-peptide administration to STZ-diabetic rats for 8 weeks results in the inhibition of diabetes-induced expansion of the mesangial matrix. This effect is independent of the level of glycemic control and results from the inhibition of diabetes-induced excessive formation of mesangial type IV collagen.  相似文献   

15.
Glucose fluctuations are strong predictor of diabetic vascular complications. We explored the effects of constant and intermittent high glucose on the proliferation and collagen synthesis of cultured rat mesangial cells. Furthermore, the possible involvement of osteopontin (OPN) was assessed. In rat mesangial cells cultured in 5, 25, or 5 mmol/L alternating with 25 mmol/L glucose in the absence or presence of neutralizing antibodies to OPN, β3 integrin receptor and β5 integrin receptor, the cell proliferation, collagen synthesis, and the expression of OPN and type IV collagen were assessed. In cultured mesangial cells, treatment with constant or intermittent high glucose significantly increased [3H]thymidine incorporation in a time‐dependent manner. A modest increase was observed at 12 h, and further deteriorated afterwards, and reached the maximum incorporation at 48 h. Treatment with constant high glucose for 48 h resulted in significant increases in [3H]thymidine incorporation, cell number, [3H]proline incorporation, mRNA, and protein levels of type IV collagen and OPN compared with mesangial cells treated with the normal glucose, which were markedly enhanced in cells exposed to intermittent high glucose medium. In addition, neutralizing antibodies to either OPN or its receptor β3 integrin but not neutralizing antibodies to β5 integrin can effectively prevented proliferation and collagen synthesis of mesangial cells induced by constant or intermittent high glucose. Intermittent high glucose exacerbates mesangial cells growth and collagen synthesis by upregulation of OPN expression, indicating that glycemic variability have important pathological effects on the development of diabetic nephropathy, which is mediated by the stimulation of OPN expression and synthesis. J. Cell. Biochem. 109: 1210–1221, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Plasma oxidized low-density lipoprotein (OX-LDL) levels are elevated in patients with renal diseases, including diabetic nephropathy. We examined effects of OX-LDL on cell proliferation and extracellular matrix (ECM) production by using normal human mesangial cells. Furthermore, we examined possible involvement of peroxisome proliferator-activated receptor gamma (PPARgamma). Mesangial cell proliferation with OX-LDL, 9-hydroxy-10,12-octadecadienoic acid (9HODE), and 13-hydroxy-9,11-octadecadienoic acid (13HODE), the major components of OX-LDL, were determined by 5-bromo-2'-deoxyuridine (BrdU) or 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) incorporation. The effect of OX-LDL on mesangial cell proliferation with PD98059 pretreatment was determined by BrdU incorporation. Type IV collagen, fibronectin, and PPARgamma expression with OX-LDL or 9HODE or 13HODE was determined by Western blotting. Type IV collagen expression with antisense oligonucleotide against PPARgamma pretreatment was also determined by Western blotting. The effect of PD98059 pretreatment on PPARgamma expression was determined by Western blotting. In mesangial cells exposed to isolated OX-LDL from human plasma, BrdU incorporation was increased, and this increase was deleted by PD98059. Type IV collagen expression was significantly increased by OX-LDL. 9HODE and 13HODE increased BrdU and MTT incorporation into mesangial cells and also increased expressions of Type IV collagen and fibronection, the major components of ECM. PPARgamma expression in mesangial cells was stimulated by 9HODE. The reduction of PPARgamma synthesis by pretreatment of antisense oligonucleotide against PPARgamma remarkably attenuated Type IV collagen synthesis induced by 9HODE. PPARgamma expression induced by 9HODE was also reduced by PD98059 pretreatment. These findings demonstrate that 9HODE, the major component of OX-LDL, stimulates cell proliferation and ECM production of human mesangial cells. In addition, the stimulatory effects are, at least in part, mediated by PPARgamma, which may exist in downstream of ERK1/2 pathway.  相似文献   

17.
18.
Mouse embryonic palatal mesenchymal (MEPM) cells were cultured either on plastic tissue culture dishes or on the surface of three-dimensional collagen gels or within collagen gel matrices in DMEM/F12 medium containing 2.5% donor calf serum. MEPM cells proliferated exponentially when cultured on collagen or on plastic. Cells cultured within collagen gels did not proliferate but remained viable. Addition of 10 ng/ml epidermal growth factor (EGF) or transforming growth factor alpha (TGF) stimulated the proliferation of those cells cultured on plastic or on collagen but not those cultured within collagen gels. Immunocytochemical analysis revealed that MEPM cells synthesise collagen types I, III, IV, V, VI and IX; fibronectin, heparan sulphate proteoglycan, laminin and tenascin in vitro. These molecules are all present in the developing palate in vivo. EGF and TGF produced a generalised stimulation of extracellular matrix (ECM) synthesis by MEPM cells in vitro. Biochemical analysis indicated that cells cultured within collagen gels had the highest intrinsic rate of protein synthesis. On all substrata neither EGF nor TGF markedly altered the types of ECM molecules synthesised but rather caused a general increase in the total amount produced. This stimulation was most marked where the cells were cultured within collagen gels. The lack of stimulation of proliferation of MEPM cells cultured within collagen gels (i.e. in a physiologically-relevant environment) by EGF or TGF together with the marked stimulation of ECM synthesis suggests that these factors may act as differentiation signals via their effects on ECM production. Correspondence to: M.J. Dixon  相似文献   

19.
Circular RNAs (circRNAs) are a novel type of noncoding RNAs that modulate the pathogenesis of multiple diseases. Nevertheless, the role of circRNAs in diabetic nephropathy (DN) pathogenesis is still ambiguous. In the current study, our team aims to investigate the expression profiles of circRNAs in DN and identify the function of circRNA on mesangial cells. CircRNAs microarray analysis revealed dysregulated circRNA in db/db DN mice, and circRNA_15698 was validated to be upregulated in both db/db mice and mouse mesangial cells (SV40-MES13) that were exposed to high glucose (25 mM) using real-time polymerase chain reaction. Loss-of-functional experiments showed that circRNA_15698 knockdown significantly inhibited the expression levels of collagen type I (Col. I), collagen type IV (Col. IV), and fibronectin. Moreover, the cellular localization of circRNA_15698 was mainly in the cytoplasm. Bioinformatics tools and luciferase reporter assay confirmed that circRNA_15698 acted as a ‘sponge’ of miR-185, and then positively regulated the transforming growth factor-β1 (TGF-β1) protein expression, suggesting a circRNA_15698/miR-185/TGF-β1 pathway. Further validation experiments validated that circRNA_15698/miR-185/TGF-β1 promoted extracellular matrix (ECM)-related protein synthesis. In summary, our study preliminarily investigates the role of circRNAs in mesangial cells and ECM accumulation, providing a novel insight for DN pathogenesis.  相似文献   

20.
The hepatic vitamin A-storing Ito cell has been implicated as a causative cell in hepatic fibrogenesis. Using a modification of a recent method (Friedman, S. L., Roll, F. J., Boyles, J., and Bissell, D. M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 8681-8685), rat Ito cells were isolated and passaged in vitro on collagen-coated plastic dishes through cell generation 40-50. The collagen synthetic phenotype for Ito cells grown on various extracellular matrices was demonstrated by immunofluorescence and quantitated by competition enzyme-linked immunosorbent assays. When grown on a type I collagen matrix, Ito cells produced type IV greater than type III greater than type I collagen. When grown on a type IV collagen matrix, the cells produced relatively equal amounts of types I and III collagen. The absolute amounts of type I collagen produced were greater when cells were grown on type IV versus type I matrix. When 10(-5) M retinol was added to cell cultures, there was a uniform increase in type III collagen regardless of matrix type but a decrease in type I collagen when cells were grown on a type IV matrix and a large increase in type I collagen when cells were grown on a type I collagen matrix. The levels of cellular retinol binding protein, a key cytosolic retinol transport protein, were quantitated by high performance liquid chromatography and compared for cells grown on type I versus type IV collagen matrices. It was found that cells on a type I matrix contain 4.96 +/- 2.8 times more cellular retinol binding protein than do cells grown on a type IV matrix. In conclusion, Ito cell collagen synthesis may be altered by underlying extracellular matrix and exogenous retinol. This in vitro culture system should allow the study of regulatory factors and possible therapeutic anti-fibrogenic mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号