首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Etiolated Cucumis sativus L. cotyledons preferentially catabolized exogenous [1-14C]oleic acid and [1-14C]linoleic acid with relatively little incorporation into complex lipids or desaturation of the 14C-labeled fatty acids. Following a 16-hour exposure to light, the greening cotyledons efficiently desaturated the exogenous 14C-labeled fatty acids. A small amount of oleate desaturation to linoleate was observed in etiolated tissue, but hardly any linoleate desaturation to α-linolenate was detected. Both oleate and linoleate desaturation showed diurnal variations with maxima at the end of light periods and minima at the end of dark periods. Illumination of etiolated tissue by flashing light, as opposed to continuous light, failed to stimulate either chlorophyll or α-linolenic acid biosynthesis, and both processes could be halted or reversed by 10 micrograms per milliliter cycloheximide. Production of polyunsaturated fatty acids from [1-14C]acetate, [1-14C]oleic acid, and [1-14C]linoleic acid, by greening cucumber cotyledons, was markedly affected by tissue integrity with finely chopped cotyledons having very little capacity for their synthesis and intact seedlings showing the highest rates.  相似文献   

2.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   

3.
Soybean membrane preparations specifically bound [14C]mycolaminaran, a branched β-1,3-glucan produced by Phytophthora sp. which elicits production of the phytoalexin glyceollin in soybean tissues. A Scatchard plot of the binding data disclosed the presence of a single affinity class of binding sites with a Kd value of 11.5 micromolar for the glucan. To assess the physiologic importance of mycolaminaran binding in phytoalexin elicitation, several derivatives of mycolaminaran were prepared. Reduced mycolaminaran had slightly greater elicitor activity and binding affinity than the native substance, while periodinated mycolaminaran was virtually devoid of either elicitor activity orbinding capability. Phosphorylated mycolaminaran, on the other hand, gave values for both elicitor activity and membrane binding which were intermediate between the native and periodinated preparations. No other tested carbohydrates competed with the binding of [14C]mycolaminaran. Soybean membrane preparations contained β-1,3-endoglucanase activity that degraded mycolaminaran and reduced both its efficiency as a phytoalexin elicitor and its membrane binding at temperatures above 0°C. Once [14C]mycolaminaran bound to membranes, however, it was not appreciably susceptible to glucanase attack and could not be displaced with excess unlabeled ligand. Taken collectively, the observations suggest that the membrane binding sites are mycolaminaran-specific receptors which are physiologically involved in the initiation of phytoalexin production in soybean cotyledons. Because the binding of mycolaminaran to membranes was abolished by heat and proteolytic enzymes, the receptor is probably a protein(s) or glycoprotein(s).  相似文献   

4.
The effects of 5,5-dimethyl-2,4-oxazolidinedione (DMO) and 2,4-dinitrophenol (DNP) on membrane vesicles of Micrococcus denitrificans were compared. DMO did not affect the ability of these vesicles to accumulate glycine in the presence of the substrate l-lactate. Both glycine transport and l-lactate oxidation were inhibited by DNP; the concentration of DNP required for inhibition of respiration was fortyfold higher than that required for inhibition of transport. Using the technique of equilibrium dialysis with membrane residues from which the lipid had been extracted, no binding of [14C]DMO to membrane protein was detected. However, [14C]DNP did bind to membrane protein. At 100 μm DNP, 12% of the [14C]DNP was bound, equivalent to 1.56 nmol/mg protein. The pH inside vesicles respiring on l-lactate was calculated from the distribution of [14C]DMO and was found not to differ from the pH of the suspending buffer. The mechanism of action of DNP on active transport in M. denitrificans vesicles appears not to involve proton conduction.  相似文献   

5.
A radioimmunoassay for glyceollin I, the major phytoalexin produced by soybean (Glycine max [L.] Merr.), has been developed. Antibodies were raised in rabbits against a glyceollin I-bovine serum albumin conjugate. The antisera were used to establish a radioimmunoassay for glyceollin I using [125I]glyceollin I as the tracer. A logit plot of a standard concentration series yielded a straight line in the range of 1 to 100 picomoles (0.34-34 nanograms) of glyceollin I. The structurally related pterocarpan phytoalexins, glyceollins II and III, glyceollidin II and glycinol, which also accumulate in infected soybean tissue, show a low cross-reactivity in the radioimmunoassay (0.5-5% at 50% displacement of the tracer). Two related isoflavones present constitutively in soybean tissue, daidzein and genistein, have cross-reactivities of less than 0.84% and 1.1%, respectively. The radioimmunoassay permitted the quantitative determination of glyceollin I in 15-micrometer microtome sections of soybean hypocotyl tissue infected with zoospores of Phytophthora megasperma f. sp. glycinea.  相似文献   

6.
Greening cucumber (Cucumis sativus L.) cotyledons exhibited dramatic increases in the ability to desaturate exogenously added [1-14C]oleic acid and [1-14C]linoleic acid within 2 to 3 hours of illumination. These increases were effectively inhibited by 10 micrograms per milliliter cycloheximide. Oleate desaturation remained at a high level in constant light for 5 to 6 days after induction and then declined by about 50%; when returned to the dark, the tissue showed a sharp decrease in conversion of [14C]oleate to [14C]linoleate. Linoleate desaturation reached a maximum about 15 hours after induction and declined immediately thereafter while the tissue still was in the light; after induction had peaked return of the tissue to the dark showed a dramatic fall of linoleate desaturation. The changes in desaturation were correlated with the conversion of the principal fatty acid in the etiolated cotyledons, linoleate, to α-linolenate, and with the assembly of the chlorophyll-containing photosynthetic membranes. The incorporation of [1-14C]acetate into lipids showed no significant light stimulation. The role of light in the regulation of certain aspects of plant metabolism during development is discussed.  相似文献   

7.
Two fractions enriched in plasma membrane derived from suspension-cultured carrot (Daucus carota L.) cells were examined to determine if they differed from each other either in physical nature or in orientation. Parameters studied included the protein composition of purified membranes derived from trypsinized and nontrypsinized protoplasts as well as from trypsinized purified plasma membranes, the effect of inhibitors and membrane perturbants on ATPase activity, the binding of [acetyl-14C]concanavalin A to purified membrane fractions, and the competitive removal of [acetyl-14C]concanavalin A from purified membranes derived from [acetyl-14C]concanavalin A-labeled protoplasts. One fraction (at density of 1.102 grams per cubic centimeter on Renografin gradients) appears to be a mixed population of `tightly' sealed vesicles with the majority being rightside-out vesicles of plasma membrane, and the other fraction (density 1.128 grams per cubic centimeter) apparently is a population of predominantly `leaky' vesicles and/or nonvesicular fragments of plasma membrane, a large portion of which appear to be `leaky' inside-out vesicles. In addition, it is shown that plasma membrane-enriched fractions can be distinguished from cellular endomembranes on the basis of protein and glycoprotein composition.  相似文献   

8.
Hori H  Elbein AD 《Plant physiology》1981,67(5):882-886
Soybean cells in suspension culture incorporate [3H]mannose into dolichyl-phosphoryl-mannose and into lipid-linked oligosaccharides as well as into extracellular and cell wall macromolecules. Tunicamycin completely inhibited the formation of lipid-linked oligosaccharides at a concentration of 5 to 10 micrograms per milliliter, but it had no effect on the formation of dolichyl-phosphoryl-mannose. Tunicamycin did inhibit the incorporation of [3H]mannose into cell wall components and extracellular macromolecules, but even at 20 micrograms per milliliter of antibiotic there was still about 30% incorporation of mannose. The radioactivity in these macromolecules was localized in mannose (70%), rhamnose (20%), galactose (8%), and fucose (2%) in the absence of antibiotic. But when tunicamycin was added, very little radioactive mannose was found in cell wall or extracellular components. The incorporation of [3H]leucine into membrane components and [14C]proline into cell wall components by these suspension cultures was unaffected by tunicamycin. However, tunicamycin did inhibit the appearance of leucine-labeled extracellular macromolecules, probably because it prevented their secretion.  相似文献   

9.
The distribution of membrane-bound enzymes involved in mannan biosynthesis in plasma and mesosomal membranes of Micrococcus lysodeikticus has been investigated.Isolated mesosomal vesicles, unlike plasma membrane preparations, cannot catalyze the transfer of [14C]mannose from GDP-[14C]mannose into mannan. This appears to result from the inability of this membrane system to synthesize the carrier lipid [14C]mannosyl-l-phosphorylundecaprenol. In contrast, this is the major manno-lipid synthesized from GDP-[14C]mannose by isolated plasma membranes. The possibility that substrate inaccessibility could account for the failure to detect the enzyme in isolated mesosomal vesicles appears unlikely from the lack of activity following disruption of the vesicles with ultrasound or with surface active agents.Both membrane preparations possessed the ability to catalyse the transfer of [14C]mannose from purified [14C]mannosyl-l-phosphorylundecaprenol into mannan. Furthermore, free mannan and mannan located on both unlabeled mesosomal and unlabeled plasma membranes could act as acceptors of [14C]mannosyl units from 14C-labeled carrier lipid located in prelabeled plasma membranes. The possibility that the juxtaposition of mesosomal vesicles and enveloping plasma membrane (i.e. the mesosomal sacculus) in vivo allows mannan, located on mesosomal vesicles, to accept mannosyl units from carrier lipid located in the sacculus membrane is discussed.  相似文献   

10.
Smith IK 《Plant physiology》1978,62(6):949-953
The transport of serine into tobacco cells (Nicotiana tabacum L.) cultured in liquid medium was examined. Transport was inhibited approximately 50% by 2,4-dichlorophenoxyacetic acid, indoleacetic acid, α-naphthalene acetic acid, and kinetin at a concentration of 10 micrograms per milliliter. Transport was not inhibited by 2,6-dichlorophenoxyacetic acid and inhibited less than 25% by p-chlorophenoxyacetic acid at this concentration. Removal of 2,4-dichlorophenoxyacetic acid from the transport medium resulted in an alleviation of inhibition. Gibberellic acid at concentrations from 2 to 20 micrograms per milliliter stimulated transport.

It was previously shown that inhibition of transport by La3+ was due to removal of Ca2+ from surface sites and inhibition of Ca2+ uptake by cells. None of the growth regulators tested had any significant effect on Ca2+ binding and/or transport.

A contributing factor to the low transport rates in the absence of Ca2+ is the increased rate of serine efflux. None of the growth regulators tested had any significant effect on the rate of serine efflux.

  相似文献   

11.
Optimum temperature and temperature coefficient of protein synthesis in young wheat plants exhibit phenotypical temperature adaptation. In plants grown for 2 days at either chilling (4 C), medium (20 C), or high (36 C) temperature the respective values are: 27 C and 14.2 kilocalories per mole, 31 C and 18.2 kilocalories per mole, 35 C and 23.6 kilocalories per mole, based on in vivo [14C]leucine incorporation into total protein. The validity of the [14C]leucine incubation method has been confirmed by double-labeling experiments. Readaptation time curves are complex: the optimum temperature parameter readjusts within approximately 4 hours to an altered temperature regime, whereas the temperature coefficient needs between 4 and 96 hours for complete readaptation—depending on the temperature conditions prior to the temperature shift. Heat-preadapted plants need a recovery period at medium temperature to regain their cold adaptability with respect to optimum temperature. Cycloheximide (30 micrograms per milliliter) reduces [14C]leucine incorporation into protein by 85%, thus indicating that predominantly the cytoplasmic 80S system of protein synthesis is involved in temperature adaptation.  相似文献   

12.
Phanerochaete chrysosporium metabolized the radiolabeled lignin model compounds [γ-14C]guaiacylglycerol-β-guaiacyl ether and [4-methoxy-14C]veratrylglycerol-β-guaiacyl ether (VI) to 14CO2 in stationary and in shaking cultures. 14CO2 evolution was greater in stationary culture. 14CO2 evolution from [γ-14C]guaiacyl-glycerol-β-guaiacyl ether and [4-methoxy-14C]veratrylglycerol-β-guaiacyl ether in stationary cultures was two- to threefold greater when 100% O2 rather than air (21% O2) was the gas phase above the cultures. 14CO2 evolution from the metabolism of the substrates occurred only as the culture entered the stationary phase of growth. The presence of substrate levels of nitrogen in the medium suppressed 14CO2 evolution from both substrates in stationary cultures. [14C]veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol were formed as products of the metabolism of VI and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether, respectively.  相似文献   

13.
Comparative feeding experiments in CuCl2,- and UV-treated lucerne (Medicago sativa) seedlings have shown that 2′,4,4′-trihydroxychalcone-[carbonyl-14C] and formononetin-[Me-14C] but not 2′,4′-dihydroxy-4-methoxychalcone-[carbonyl- 14C] or daidzein-[4-14C] were incorporated into the phytoalexins demethylhomopterocarpin, sativan and vestitol, and also into 9-O-methylcoumestrol. The synthesis of 9-O-methylcoumestrol is greatly stimulated by this abiotic treatment but coumestrol production is not noticeably affected. Daidzein and the trihydroxychalcone were precursors of coumestrol. The results are interpreted in favour of a mechanism in which methylation is an integral part of the aryl migration process associated with the biosynthesisof 4′-methoxyisoflavonoids. Formononetin, 2′,7-dihydroxy-4′-methoxyisoflavone-[Me-14C], 7-hydroxy-4′-methoxyisoflavanone-[Me-14C] and 2′,7-dihydroxy-4′-methoxyisoflavanone-[Me-14C] were all excellent precursors of demethylhomopterocarpin, sativan, vestitol and 9-O-methylcoumestrol, and thus a metabolic grid may be involved in their biosynthetic origin.  相似文献   

14.
Fatty acid biosynthesis from Na[1-14C]acetate was characterized in plastids isolated from primary roots of 7-day-old germinating pea (Pisum sativum L.) seeds. Fatty acid synthesis was maximum at 82 nanomoles per hour per milligram protein in the presence of 200 micromolar acetate, 0.5 millimolar each of NADH, NADPH, and coenzyme A, 6 millimolar each of ATP and MgCl2, 1 millimolar each of MnCl2 and glycerol-3-phosphate, 15 millimolar KHCO3, 0.31 molar sucrose, and 0.1 molar Bis-Tris-propane, pH 8.0, incubated at 35°C. At the standard incubation temperature of 25°C, fatty acid synthesis was essentially linear for up to 6 hours with 80 to 120 micrograms per milliliter plastid protein. ATP and coenzyme A were absolute requirements, whereas divalent cations, potassium bicarbonate, and reduced nucleotides all variously improved activity two- to 10-fold. Mg2+ and NADH were the preferred cation and nucleotide, respectively. Glycerol-3-phosphate had little effect, whereas dithiothreitol and detergents generally inhibited the incorporation of [14C]acetate into fatty acids. On the average, the principal radioactive products of fatty acid biosynthesis were approximately 39% palmitic, 9% stearic, and 52% oleic acid. The proportions of these fatty acids synthesized depended on the experimental conditions.  相似文献   

15.
Cowan AK  Rose PD 《Plant physiology》1991,97(2):798-803
The interrelationship between abscisic acid (ABA) production and β-carotene accumulation was investigated in salt-stressed cells of the halotolerant green alga Dunaliella salina var bardawil. Cells were supplied with either R-[2-14C]mevalonolactone or [14C] sodium bicarbonate for 20 hours and then exposed to increased salinity (1.5 to 3.0 molar NaCl) for various lengths of time. Incorporation of label into abscisic acid and phaseic acid and the distribution of [14C]ABA between the cells and incubation media were monitored. [14C]ABA and [14C]phaseic acid were identified as products of both R-[2-14C]mevalonolactone and [14C]sodium bicarbonate metabolism. ABA metabolism was enhanced by hypersalinity stress. Actinomycin D, chloramphenicol, and cycloheximide abolished the stress-induced production of ABA, suggesting a role for gene activation in the process. Kinetic analysis of both ABA and β-carotene production demonstrated two stages of accelerated β-carotene production. In addition, ABA levels increased rapidly, and this increase occurred coincident with the early period of accelerated β-carotene production. A possible role for ABA as a regulator of carotenogenesis in cells of D. salina is therefore discussed.  相似文献   

16.
Particulate enzyme preparations of cotton fibers catalyze the acylation of exogenous steryl glucoside to form acylated steryl glucoside. The acyl transferase involved in this reaction was solubilized by treatment of the membrane fractions with Triton X-100 and was partially purified by chromatography on DEAE-cellulose and gel filtration. This solubilized enzyme had an absolute requirement for Triton X-100 and phospholipid in order to catalyze the acylation of the steryl glucoside. The best phospholipid substrate was phosphatidylethanolamine but egg and soybean phosphatidylcholine were also active. The phospholipid was shown to function as an acyl donor by demonstrating that [14C]fatty acid from 14C-labeled phospholipid could be transferred to steryl-[3H]glucoside to form [14C,3H]acylated steryl glucoside. Saponification of this compound yielded [14C]fatty acid and steryl-[7H]glucoside.  相似文献   

17.
The process of sucrose transport was investigated in sealed putative tonoplast vesicles isolated from sugarbeet (Beta vulgaris L.) taproot. If the vesicles were allowed to develop a steady state pH gradient by the associated transport ATPase and 10 millimolar sucrose was added, a transient flux of protons out of the vesicles was observed. The presence of an ATPase produced pH gradient allowed [14C]sucrose transport into the vesicles to occur at a rate 10-fold higher than the rate observed in the absence of an imposed pH gradient. Labeled sucrose accumulated into the sealed vesicles could be released back to the external medium if the pH gradient was dissipated with carbonylcyanide-m-chlorophenyl hydrazone (CCCP). When the kinetics of ATP dependent [14C]sucrose uptake were examined, the kinetic profile followed the simple Michaelis-Menten relationship and a Michaelis constant of 12.1 millimolar was found. When a transient, inwardly directed sucrose gradient was imposed on the vesicles in the absence of charge compensating ions, a transient interior negative membrane potential was observed. This membrane potential could be prevented by the addition of CCCP prior to sucrose or dissipated by the addition of CCCP after sucrose was added. These results suggest that an electrogenic H+/sucrose antiport may be operating on the vesicle membrane.  相似文献   

18.
1. 4-Methoxytoluquinol was secreted into the medium by surface cultures of the basidiomycete Lentinus degener Kalchbr. (approx. 100mg./l. of medium). In addition, epoxysuccinic acid (150–200mg.) and a long-chain diacetylenic alcohol (3mg.) were also secreted. Epoxysuccinic acid has previously been found in the culture medium of some Fungi Imperfecti. These metabolites were all synthesized during the early phase of growth but maximum production occurred some time later. 2. Supplementation of the medium with cycloheximide or 8-azaguanine inhibited the production of epoxysuccinic acid. 3. Sodium [1-14C]acetate and 6-methyl[14C]salicylic acid were not incorporated into 4-methoxytoluquinol, but [U-14C]tyrosine and [Me-14C]methionine were incorporated to the extent of 0·55 and 4·75% respectively (minimum values). Degradation studies established that the aromatic ring and C-methyl group were derived from the ring and β-carbon atom of tyrosine; the O-methyl group alone was formed from methionine.  相似文献   

19.
1. 26-Hydroxycholesterol was obtained by reducing the methyl ester of (±)-3β-hydroxycholest-5-en-26-oic acid, which was synthesized from 25-oxonorcholesterol. 2. Methods for preparing 7α-hydroxycholesterol and 7-dehydrocholesterol were modified to allow the micro-scale preparation of these [14C]sterols from [26-14C]-cholesterol. 3. 26-Hydroxycholesterol was oxidized more readily than 7α-hydroxycholesterol, 7-dehydrocholesterol or cholesterol by mitochondrial preparations from livers of mice, rats, guinea pigs, common toads (Bufo vulgaris) and Caiman crocodylus. 4. (±)-3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was oxidized very rapidly to 14CO2 by mouse and guinea-pig mitochondria without evident discrimination between the two optical isomers. 5. An enzyme system that oxidizes 26-hydroxycholesterol to 3β-hydroxycholest-5-en-26-oic acid was identified in the soluble extract of rat-liver mitochondria. This enzyme could use NADP in place of NAD but was not identical with liver alcohol dehydrogenase (EC 1.1.1.1). 6. [26-14C]Cholesteryl 3β-sulphate was not oxidized by fortified mouse-liver preparations that oxidized [26-14C]cholesterol to 14CO2.  相似文献   

20.
Absorption kinetics of [14C]glucose and [β-methyl-14C]glucoside in Hymenolepis diminuta are reported. β-Methylglucoside (βMG) is a pure competitive inhibitor of [14C]glucose transport and has kinetic parameters, Vmax and Kt, for transport similar to those reported for glucose. While absorbed 14C-βMG is not metabolized, transport of this glucose analog retains the general characteristics which have been established for glucose transport including: (1) Na+ dependence, (2) inhibition by K+, (3) sensitivity to phlorizin and various hexoses, (4) transport against an apparent concentration gradient, and (5) increase in worm water during accumulation. It is concluded that glucose and βMG are transported by the same system. The value of using βMG to study the mechanism of hexose transport and accumulation in H. diminuta is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号