首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UL14 gene product of herpes simplex virus is a 32kDa protein expressed late in infection and is a minor component of the virion tegument. We recently showed that the wild-type UL14 protein has heat shock protein (HSP)-like and/or molecular chaperone-like functions. In this study, the intracellular localization of UL14 wild-type and deletion mutant proteins was examined in transfected cells by immunofluorescence. We found that N-terminus deleted but not wild-type/C-terminus deleted mutant proteins showed a significant number of cytoplasmic, multi-cellular stains in transfected Vero cells. The effect was greatly intensified by subjecting cells to heat shock at 43 degrees C, whereas it was obstructed by treatment with the microfilament-disrupting drug cytochalasin D. The staining patterns of UL14 antigen-positive cells after heat shock suggested a cell-to-cell spread of the protein. Although the mechanism is unclear, the phenomenon seems to be an unprecedented type of intercellular trafficking.  相似文献   

2.
Previously, we established HEp2 cell lines which express the US3 protein kinase of herpes simplex virus type 2 upon induction with IPTG. Using these cells, we examined whether expression of US3 is sufficient to protect cells from apoptotic cell death induced by sorbitol. Cells expressing US3 showed significantly reduced nuclear fragmentation in the degree that DNA fragmentation and caspase-3 activation were suppressed. It is known that stressors such as osmotic shock and UV irradiation induce the activation of the JNK (c-Jun N-terminal kinase), which can lead to apoptotic cell death. Expression of US3 resulted in the suppression of sorbitol-induced phosphorylation of JNK and MKK4/SEK1, suggesting that the suppression of apoptotic cell death was due to the attenuation of JNK activity.  相似文献   

3.
Apoptosis is an innate cellular defense response to viral infection. The slow-replicating human cytomegalovirus (HCMV) blocks premature death of host cells prior to completion of the infection cycle. In this study, we report that the HCMV UL38 gene encodes a cell death inhibitory protein. A mutant virus lacking the pUL38 coding sequence, ADdlUL38, grew poorly in human fibroblasts, failed to accumulate viral DNA to wild-type levels, and induced excessive death of infected cells. Cells expressing pUL38 were resistant to cell death upon infection and effectively supported the growth of ADdlUL38. Cells infected with the pUL38-deficient virus showed morphological changes characteristic of apoptosis, including cell shrinkage, membrane blebbing, vesicle release, and chromatin condensation and fragmentation. The proteolytic cleavage of two key enzymes involved in apoptosis, namely, caspase 3 and poly(ADP-ribose) polymerase, was activated upon ADdlUL38 infection, and the cleavage was blocked in cells expressing pUL38. The pan-caspase inhibitor Z-VAD-FMK largely restored the growth of ADdlUL38 in normal fibroblasts, indicating that the defective growth of the mutant virus mainly resulted from premature death of host cells. Furthermore, cells expressing pUL38 were resistant to cell death induced by a mutant adenovirus lacking the antiapoptotic E1B-19K protein or by thapsigargin, which disrupts calcium homeostasis in the endoplasmic reticulum. Taken together, these results indicate that the HCMV protein pUL38 suppresses apoptosis, blocking premature death of host cells to facilitate efficient virus replication.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) UL6, UL15, and UL28 proteins are essential for cleavage of replicated concatemeric viral DNA into unit length genomes and their packaging into a preformed icosahedral capsid known as the procapsid. The capsid-associated UL6 DNA-packaging protein is located at a single vertex and is thought to form the portal through which the genome enters the procapsid. The UL15 protein interacts with the UL28 protein, and both are strong candidates for subunits of the viral terminase, a key component of the molecular motor that drives the DNA into the capsid. To investigate the association of the UL6 protein with the UL15 and UL28 proteins, the three proteins were produced in large amounts in insect cells with the baculovirus expression system. Interactions between UL6 and UL28 and between UL6 and UL15 were identified by an immunoprecipitation assay. These results were confirmed by transiently expressing wild-type and mutant proteins in mammalian cells and monitoring their distribution by immunofluorescence. In cells expressing the single proteins, UL6 and UL15 were concentrated in the nuclei whereas UL28 was found in the cytoplasm. When the UL6 and UL28 proteins were coexpressed, UL28 was redistributed to the nuclei, where it colocalized with UL6. In cells producing either of two cytoplasmic UL6 mutant proteins and a functional epitope-tagged form of UL15, the UL15 protein was concentrated with the mutant UL6 protein in the cytoplasm. These observed interactions of UL6 with UL15 and UL28 are likely to be of major importance in establishing a functional DNA-packaging complex at the portal vertex of the HSV-1 capsid.  相似文献   

5.
Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.  相似文献   

6.
Herpes simplex virus type 1 packages its DNA genome into a precursor capsid, referred to as the procapsid. Of the three capsid-associated DNA-packaging proteins, UL17, UL25, and UL6, only UL17 and UL6 appear to be components of the procapsid, with UL25 being added subsequently. To determine whether the association of UL17 or UL25 with capsids was dependent on the other two packaging proteins, B capsids, which lack viral DNA but retain the cleaved internal scaffold, were purified from nonpermissive cells infected with UL17, UL25, or UL6 null mutants and compared with wild-type (wt) B capsids. In the absence of UL17, the levels of UL25 in the mutant capsids were much lower than those in wt B capsids. These results suggest that UL17 is required for efficient incorporation of UL25 into B capsids. B capsids lacking UL25 contained about twofold-less UL17 than wt capsids, raising the possibilities that UL25 is important for stabilizing UL17 in capsids and that the two proteins interact in the capsid. The distribution of UL17 and UL25 on B capsids was examined using immunogold labeling. Both proteins appeared to bind to multiple sites on the capsid. The properties of the UL17 and UL25 proteins are consistent with the idea that the two proteins are important in stabilizing capsid-DNA structures rather than having a direct role in DNA packaging.  相似文献   

7.
The UL51 gene of herpes simplex virus type 1 (HSV-1) encodes a phosphoprotein whose homologs are conserved throughout the herpes virus family. Recently, we reported that UL51 protein colocalizes with Golgi marker proteins in transfected cells and that targeting of UL51 protein to the Golgi apparatus depends on palmitoylation of its N-terminal cysteine at position 9 (N. Nozawa, T. Daikoku, T. Koshizuka, Y. Yamauchi, T. Yoshikawa, and Y. Nishiyama, J. Virol. 77:3204-3216, 2003). However, its role in the HSV replication cycle was unknown. Here, we generated UL51-null mutants (FDL51) in HSV-1 to uncover the function of UL51 protein. We show that the mutant plaques were much smaller in size and that maximal titers were reduced nearly 100-fold compared to wild-type virus. Electron microscopy indicated that the formation of nucleocapsids was not affected by the deletion of UL51 but that viral egress from the perinuclear space was severely compromised. In FDL51-infected cells, a large number of enveloped nucleocapsids were observed in the perinuclear space, but enveloped mature virions in the cytoplasm, as well as extracellular mature virions, were rarely detected. These defects were fully rescued by reinsertion of the UL51 gene. These results indicate that UL51 protein is involved in the maturation and egress of HSV-1 virus particles downstream of the initial envelopment step.  相似文献   

8.
Viruses have evolved different strategies to interfere with apoptotic pathways in order to halt cellular responses to infection. The herpes simplex virus 1 (HSV-1) Us3 open-reading frame encodes a serine/threonine protein kinase that participates in the inhibition of apoptosis induced by virus infection and other stress agents. Previous studies have shown that Us3 counteracts the virus-induced activation of caspase-3 by acting at a premitochondrial stage. Using stable transfectants that express Us3 under the control of constitutive or inducible promoters we demonstrate that apoptosis induced by treatment with anti-Fas antibody and sorbitol is blocked when Us3 is expressed at levels comparable to those achieved during virus infection. Expression of Us3 correlated with phosphorylation of Bad, a BH3-only proapoptotic Bcl-2 family member that is also a target for growth factor-induced cellular kinases. Bad was phosphorylated by Us3 in in vitro kination assays. These results point to a strategy for viral inhibition of apoptosis based on functional inactivation of a critical component of the cellular death machinery.  相似文献   

9.
An interaction between the HSV-1 UL25 capsid protein and cellular microtubule-associated protein was found using a yeast two-hybrid screen and β-D-galactosidase activity assays. Immunofluorescence microscopy of the UL25 protein demonstrated its co-localization with cellular microtubule-associated protein in the plasma membrane. Further investigations with deletion mutants suggest that UL25 is likely to have a function in the nucleus.  相似文献   

10.
BACKGROUND: Tumour necrosis factor alpha (TNFalpha) therapy is a promising anti-cancer treatment when combined with radiotherapy due to its potent radio sensitising effects, but systemic toxicity has limited its clinical use. Previously, non-replicative adenovirus vectors have been used to deliver TNFalpha directly to the tumour, including under the control of a radiation sensitive promoter. Here, we have used an ICP34.5 deleted, oncolytic herpes simplex virus (HSV) for delivery to increase expression levels and spread through the tumour, and the use of the US11 true late HSV promoter to limit expression to where the virus replicates, i.e. selectively in tumour tissue. METHODS: TNFalpha expression under the CMV or US11 promoter was compared on cell lines CT26, BHK and Fadu. To further compare the activities of the promoters, expression of human TNFalpha was analysed in the presence and absence of acyclovir--an inhibitor of viral DNA replication and on HSV/ICP34.5- non-permissive cell line 3T6. The in vivo efficacy and toxicity of TNFalpha viruses were compared using A20 double flank tumour model in Balb/C mice and Fadu tumour model in nude mice. RESULTS: The results demonstrated that the US11 promoter significantly reduced and delayed TNFalpha expression as compared to use of the CMV promoter, especially in non-permissive cells or in the presence of acyclovir. Despite the reduced and more selective expression levels, US11 driven TNFalpha showed improved anti-tumour effects compared to CMV driven TNFalpha, and without the toxic side effects. CONCLUSIONS: This approach is therefore beneficial in increasing localised TNFalpha expression as compared to the use of non-replicative approaches, and combines the effects of TNFalpha with oncolytic virus replication which is expected to further enhance the efficacy of radiotherapy in a combined treatment approach.  相似文献   

11.
To investigate the role of the herpes simplex virus origin-binding protein (UL9) in the initiation of DNA replication, we have examined the effect of UL9 binding on the structure of the viral origin of replication. UL9 loops and alters the DNA helix of the origin regardless of the phasing of the binding sites. DNase I and micrococcal nuclease footprinting show that UL9 binds two sites in the origin and loops the AT-rich DNA between them independent of the topology of the DNA. KMnO4 and dimethyl sulfate footprinting further show that UL9 alters the DNA helix in the AT region. In contrast to the looping reaction, however, helical distortion requires the free energy of supercoiled DNA. UL9 also loops and distorts the origin DNA of a replication-defective mutant with a 6-bp insertion in the AT region. Because the helical distortion of this mutant DNA is different from that of functional origins, we conclude that an imperfect tertiary structure of the mutant DNA may contribute to its loss of replication function.  相似文献   

12.
UL13 and Us3 are protein kinases encoded by herpes simplex virus 1. We report here that Us3 is a physiological substrate for UL13 in infected cells, based on the following observations. (i) The electrophoretic mobility, in denaturing gels, of Us3 isoforms from Vero cells infected with wild-type virus was slower than that of isoforms from cells infected with a UL13 deletion mutant virus (DeltaUL13). After treatment with phosphatase, the electrophoretic mobility of the Us3 isoforms from cells infected with wild-type virus changed, with one isoform migrating as fast as one of the Us3 isoforms from DeltaUL13-infected cells. (ii) A recombinant protein containing a domain of Us3 was phosphorylated by UL13 in vitro. (iii) The phenotype of DeltaUL13 resembles that of a recombinant virus lacking the Us3 gene (DeltaUs3) with respect to localization of the viral envelopment factors UL34 and UL31, whose localization has been shown to be regulated by Us3. UL34 and UL31 are localized in a smooth pattern throughout the nuclei of cells infected with wild-type virus, whereas their localization in DeltaUL13- and DeltaUs3-infected cells appeared as nuclear punctate patterns. These results indicate that UL13 phosphorylates Us3 in infected cells and regulates UL34 and UL31 localization, either by phosphorylating Us3 or by a Us3-independent mechanism.  相似文献   

13.
14.
We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.  相似文献   

15.
The US3 of HSV encodes a serine/threonine protein kinase that is highly conserved among members of the alphaherpesviruses. It is an accessory gene that is not required for viral replication in cultured cells but appears essential for viral survival in humans. Although accumulating in vitro evidence suggested that the viral protein kinase is multifunctional, little information is available about its functions in vivo. Several reports point out that, upon invasion into the peripheral nervous system, HSV blocks virus-induced neuronal apoptosis, while presumably subverting host immune responses, largely through actions of the US3 protein kinase. In addition, the US3 protein kinase confers the viral neurovirulence. In the present article, functions of the HSV US3 protein kinase are briefly reviewed, with special attention given to its role in regulating host responses and neurovirulence.  相似文献   

16.
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.  相似文献   

17.

Background  

The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-ε4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39–43 amino acid protein - β amyloid (Aβ) - within the brain. This is cleaved from the much larger transmembranal protein 'amyloid precursor protein' (APP). Any agent able to interfere directly with Aβ or APP metabolism may therefore have the capacity to contribute towards AD. One recent report showed that certain HSV1 glycoprotein peptides may aggregate like Aβ; a second study described a role for APP in transport of virus in squid axons. However to date the effects of acute herpesvirus infection on metabolism of APP in human neuronal-type cells have not been investigated. In order to find if HSV1 directly affects APP and its degradation, we have examined this protein from human neuroblastoma cells (normal and transfected with APP 695) infected with the virus, using Western blotting.  相似文献   

18.
Herpesvirus DNA is packaged into capsids in the nuclei of infected cells in a process requiring at least six viral proteins. Of the proteins required for encapsidation of viral DNA, UL15 and UL28 are the most conserved among herpes simplex virus type 1 (HSV), varicella-zoster virus, and equine herpesvirus 1. The subcellular distribution of the pseudorabies virus (PRV) UL28 protein was examined by in situ immunofluorescence. UL28 was present in the nuclei of infected cells; however, UL28 was limited to the cytoplasm in the absence of other viral proteins. When cells expressing variant forms of UL28 were infected with a PRV UL28-null mutant, UL28 entered the nucleus, provided the carboxyl-terminal 155 amino acids were present. Additionally, PRV UL28 entered the nucleus in cells infected with HSV. Two HSV packaging proteins were tested for the ability to affect the subcellular distribution of UL28. Coexpression of HSV UL15 enabled PRV UL28 to enter the nucleus in a manner that required the carboxyl-terminal 155 amino acids of UL28. Coexpression of HSV UL25 did not affect the distribution of UL28. We propose that an interaction between UL15 and UL28 facilitates the transport of a UL15-UL28 complex to the infected-cell nucleus.  相似文献   

19.
Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases,including localized mucocutaneous lesions,encephalitis,and disseminated diseases.HSV infection leads to rapid induction of innate immune responses.A critical part of this host response is the type I IFN system including the induction of type I IFNs,IFN-mediated signaling and amplification of IFN response.This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response.However,HSV has devised multiple strategies to evade and interfere with innate immunity.This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号