首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The UV-sensitive Chinese hamster ovary (CHO) cell line UV5, which is defective in the incision step of nucleotide excision repair, was used to identify and clone a complementing human gene, ERCC2, and to study the repair process. Genomic DNA from a human-hamster hybrid cell line was sheared and cotransferred with pSV2gpt plasmid DNA into UV5 cells to obtain five primary transformants. Transfer of sheared DNA from one primary transformant resulted in a secondary transformant expressing both gpt and ERCC2. The human repair gene was identified with a probe for Alu-family repetitive sequences. For most primary, secondary, and cosmid transformants, survival after UV exposure showed a return to wild-type levels of resistance. The levels of UV-induced mutation at the aprt locus for secondary and cosmid transformants varied from 50 to 130% of the wild-type level. Measurements of the initial rate of UV-induced strand incision by alkaline elution indicated that, whereas the UV5 rate was 3% of the wild-type level, rates of cosmid-transformed lines were similar to that of the wild type, and the secondary transformant rate was about 165% of the wild-type rate. Analysis of overlapping cosmids determined that ERCC2 is between 15.5 and 20 kilobases and identified a closely linked gpt gene. Cosmids were obtained with functional copies of both ERCC2 and gpt. ERCC2 corrects only the first of the five CHO complementation groups of incision-defective mutants.  相似文献   

2.
A human DNA repair gene, ERCC2 (Excision Repair Cross Complementing 2), was assigned to human chromosome 19 using hybrid clone panels in two different procedures. One set of cell hybrids was constructed by selecting for functional complementation of the DNA repair defect in mutant CHO UV5 after fusion with human lymphocytes. In the second analysis, DNAs from an independent hybrid panel were digested with restriction enzymes and analyzed by Southern blot hybridization using DNA probes for the three DNA repair genes that are located on human chromosome 19: ERCC1, ERCC2, and X-Ray Repair Cross Complementing 1 (XRCC1). The results from hybrids retaining different portions of this chromosome showed that ERCC2 is distal to XRCC1 and in the same region of the chromosome 19 long arm (q13.2-q13.3) as ERCC1, but on different MluI macrorestriction fragments. Similar experiments using a hybrid clone panel containing segregating Chinese hamster chromosomes revealed the hamster homologs of the three repair genes to be part of a highly conserved linkage group on Chinese hamster chromosome number 9. The known hemizygosity of hamster chromosome 9 in CHO cells can account for the high frequency at which genetically recessive mutations are recovered in these three genes in CHO cells. Thus, the conservation of linkage of the repair genes explains the seemingly disproportionate number of repair genes identified on human chromosome 19.  相似文献   

3.
A DNA-repair mutant isolated from Chinese hamster V79 cells, V-H1, has been characterized as having only slightly reduced unscheduled DNA synthesis (UDS) and intermediate levels of DNA incision and repair replication after UV exposure. This observation was unexpected, since V-H1 has been shown by genetic complementation analysis to belong to the UV5 complementation class (i.e., class 2), exhibiting equivalent UV hypersensitivity and hypermutability as UV5 cells, which are defective in incision, UDS and repair replication. We have examined the repair of cyclobutane dimers and (6-4) photoproducts in V-H1 and V79 cells and shown that V-H1 cells are deficient in cyclobutane dimer repair, but exhibit intermediate (6-4) photoproduct repair, unlike UV5 cells which are completely deficient in (6-4) photoproduct repair. Our results confirm observations made in other UV-hypersensitive Chinese hamster cell mutants in CHO complementation class 2, and suggest that the gene affected in these mutants (ERCC2) may be involved in at least two distinct repair pathways in hamster cells.  相似文献   

4.
Using a transient gene expression assay to measure host cell reactivation, the effects of cyclobutane dimer and noncyclobutane dimer uv photoproducts on expression of a reporter gene were examined in normal and repair-deficient Chinese hamster ovary (CHO) cell lines. Ultraviolet damage in plasmid pRSV beta gal DNA, containing the Escherichia coli beta-galactosidase gene, resulted in reduced reporter gene expression in both uv-hypersensitive mutant CHO cell lines UV5 and UV61 relative to wild-type, parental AA8 cells. However, the effects of uv irradiation of transfected plasmid DNA on gene activity were reduced in UV61, a mutant with normal (6-4) photoproduct repair, compared to UV5, which is deficient in (6-4) photoproduct repair; this reduction correlated with the intermediate uv-hypersensitivity of UV61. Selective removal of cyclobutane dimers by in vitro photoreactivation of uv-irradiated plasmid DNA prior to transfection substantially increased reporter gene activity in both uv-hypersensitive mutant cell lines. This increase was significantly greater in UV61 than in UV5, consistent with UV5 being deficient in repair of both (6-4) photoproducts and cyclobutane dimers. These results suggest that unrepaired (6-4) photoproducts in transfected pRSV beta gal plasmid DNA are responsible for a significant fraction of the reduction in transient gene expression observed in recipient uv-hypersensitive CHO cell mutants.  相似文献   

5.
Properties and applications of human DNA repair genes   总被引:3,自引:0,他引:3  
The importance of understanding DNA repair processes is discussed in terms of the origins of human cancer. Several human repair genes have been mapped to specific human chromosomes using somatic cell hybrids. It is noteworthy that 3 of these genes lie in the same region of chromosome 19: genes ERCC1 and ERCC2, which are involved in nucleotide excision repair, and XRCC1, which is involved in the repair of strand breaks. The genes XRCC1 and ERCC2 were cloned from cosmid libraries prepared from DNA transformants of the CHO mutants EM9 and UV5, respectively. Analysis of the cDNA sequence of ERCC2 showed that the protein encoded by this gene is highly homologous (73%) to the RAD3 repair protein in the yeast Saccharomyces cerevisiae. Thus, the known properties of RAD3 combined with the high homology provide the first insight about the biochemical role of a human repair protein involved in the incision step of nucleotide excision repair. So far XRCC1 is the only cloned mammalian gene involved in repairing damage from ionizing radiation. The UV5 mutant line was also applied to problems in environmental mutagenesis by introducing the mouse cytochrome P(3)450 (P450IA2 subfamily) gene for metabolic activation of aromatic amines. We show in a rapid differential cytotoxicity assay with 2 compounds found in cooked beef (IQ, 2-amino-3-methylimidazo[4,5-f]quinoline and PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) that this gene is efficiently expressed in the transformed UV5P3 cells. Reversion of the repair deficiency in these cells will give a matched pair of cell lines that are metabolically proficient and repair deficient. Such lines will provide a rapid assay for genotoxic heterocyclic amines requiring activation.  相似文献   

6.
Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defective in the UV-sensitive cells. In contrast, only 20-60% of antibody-binding sites specific for cyclobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair of (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude that a consequence of DNA repair in CHO cells is modification rather than removal of cyclobutane dimers.  相似文献   

7.
The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

8.
The expression of ERCC1, a member of the nucleotide excision repair (NER) family, is enhanced in cells transfected with insulin-like growth factor 1 (IGF-1) receptors. Of interest, an excellent concordance between ERCC1 expression and NER-mediated cell survival has been demonstrated. The two aims of the present study were to determine the signaling pathways used by IGF-1 to confer protection against apoptotic cell death in Chinese hamster ovary (CHO) cells and to assess the role of NER in this IGF-1 action. Experiments with pharmacological inhibitors indicated that phosphatidylinositol 3-kinase (PI 3-kinase) but not mitogen-activated protein kinase (ERK1/ERK2) mediates IGF-1 antiapoptotic activity. Using two series of CHO cells that have altered expression of ERCC1 or XPB/ERCC3, we examined IGF-1's ability to delay apoptotic death and reduction of mitochondrial oxidative function mediated by growth factor withdrawal. IGF-1 effectively blocked apoptosis, concomitant with increased MTT activity, in a pair of CHO cell lines expressing inactive ERCC1 (43-3B cells) and the transfected line of the mutant carrying the expressed human ERCC1 gene (83-G5 cells). Similarly, repair-deficient UV24 cells, which lack XPB/ERCC3, and their parental line AA8 were also responsive to the IGF-1's antiapoptotic capacity. In the presence of IGF-1, these cell lines became resistant to the cleavage of poly(ADP-ribose) polymerase, a key player in DNA damage recognition and DNA repair. These results suggest that PI 3-kinase activation plays a determinant role in the antiapoptotic function of IGF-1, but that functional NER does not play a critical part in mediating this IGF-1 response.  相似文献   

9.
Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. We have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Our available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5'-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Our evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed from several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeasts, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Our analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B.  相似文献   

10.
The UV hypersensitive CHO cell mutant UV41 is the archetypal XPF mammalian cell mutant, and was essential for cloning the human nucleotide excision repair (NER) gene XPF by DNA transfection and rescue. The ERCC1 and XPF genes encode proteins that form the heterodimer responsible for making incisions required in NER and the processing of certain types of recombination intermediates. In this study, we cloned and sequenced the CHO cell XPF cDNA, determining that the XPF mutation in UV41 is a +1 insertion in exon 8 generating a premature stop codon at amino acid position 499; however, the second allele of XPF is apparently unaltered in UV41, resulting in XPF heterozygosity. XPF expression was found to be several-fold lower in UV41 compared to its parental cell line, AA8. Using approaches we previously developed to study intrachromosomal recombination in CHO cells, we modified UV41 and its parental cell line AA8 to allow site-specific gene targeting at a Flp recombination target (FRT) in intron 3 of the endogenous adenine phosphoribosyltransferase (APRT) locus. Using FLP/FRT targeting, we integrated a plasmid containing an I-SceI endonuclease sequence into this site in the paired cell lines to generate a heteroallelic APRT duplication. Frequencies of intrachromosomal recombination between APRT heteroalleles and the structures of resulting recombinants were analyzed after I-SceI induction of site-specific double-strand breaks (DSBs) in a non-homologous insertion contained within APRT homology. Our results show that I-SceI induced a small proportion of aberrant recombinants reflecting DSB-induced deletions/rearrangements in parental, repair-proficient AA8 cells. However, in XPF mutant UV41, XPF heterozygosity is responsible for a similar, but much more pronounced genomic instability phenotype, manifested independently of DSB induction. In addition, gene conversions were suppressed in UV41 cells compared to wild-type cells. These observations suggest that UV41 exhibits a genomic instability phenotype of aberrant recombinational repair, confirming a critical role for XPF in mammalian cell recombination.  相似文献   

11.
Pierisin-1, a cytotoxic protein from the cabbage butterfly (Pieris rapae), induces apoptosis in mammalian cell lines. Binding of its C-terminal region to glycosphingolipid Gb3 and Gb4 receptors on cell membrane is necessary for incorporation into cells, while the N-terminal polypeptide catalyzes transfer of the ADP-ribose moiety of NAD at N2 of dG in DNA. Resulting DNA adducts cause mutation if they are present at low levels. If the DNA damage is more severe, the cells undergo apoptosis. In the present study, we examined the repair system for ADP-ribosylated dG adducts using nucleotide excision repair (NER) mutants of Chinese hamster ovary (CHO) cell lines. Pierisin-1 showed cytotoxic effects in all cases: IC50 values of them were; 650 ng/ml for AA8 (wild), 230 ng/ml for UV5, 190 ng/ml for UV20, 260 ng/ml for UV41, and 240 ng/ml for UV135. Thus, wild-type AA8 proved most resistant to pierisin-1-induced cytotoxicity. When these CHO cell lines were treated with pierisin-1, the adduct levels of ADP-ribosylated dG increased to 2.5-4.8/10(5) nucleotides time-dependently in all cell lines at 12 h. After removal of pierisin-1, the adduct levels remained constant or increased to 4-14/10(5) nucleotides in all NER mutant cells (UV5, UV20, UV41, UV135), while those rapidly decreased to 0.27/10(5) nucleotides in the repair proficient AA8 cells for 24 h. From these results, it is suggested that the NER system is involved in the repair of ADP-ribosylated dG adducts in DNA.  相似文献   

12.
The complete human nucleotide excision repair gene FRCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

13.
Exposure of eukaryotic cells to ultraviolet light results in a temporary inhibition of DNA replication as well as a temporary blockage of DNA fork progression. Recently there has been considerable debate as to whether the (5-6)cyclobutane pyrimidine dimer, the pyrimidine(6-4)pyrimidone lesion or both are responsible for these effects. Using cell lines that repair both of these lesions (CHO AA8), only (6-4) lesions (CHO UV61) or neither (CHO UV5), we have shown that in rodent cells both lesions appear to play a role in both the inhibition of thymidine incorporation and the blockage of DNA fork progression. Specifically, after exposure to 2.5 J/m2, AA8 cells recover normal rates of DNA replication within 5 h after exposure, while UV5 cells exhibit a greater depression in thymidine incorporation for at least 10 h. UV61 cells, on the other hand, show an intermediate response, both with respect to the extent of the initial depression and the rate of recovery of thymidine incorporation. UV61 cells also exhibit an intermediate response with respect to blockage of DNA fork progression. In previous publications we have shown that UV5 cells exhibit extensive blockage of DNA fork progression and only limited recovery of this effect within the first 5 h after exposure to UV. In this report we show that UV61 cells exhibit a more extensive blockage of fork progression than is observed in AA8 cells. These blocks also appear to be removed (or overcome) more slowly than in the AA8 cells, but more rapidly than in UV5 cells. Taken together we conclude that both lesions appear to be involved in the initial depression in thymidine incorporation and the initial blockage of DNA fork progression in rodent cells. These data also indicate that (6-4) lesions may be responsible for the prolonged depression in thymidine incorporation and the prolonged blockage of DNA fork progression observed in UV5 cells.  相似文献   

14.
We have cloned the human DNA excision repair gene ERCC6 by virtue of its ability to correct the uv sensitivity of Chinese hamster overy cell mutant UV61. This mutant is a member of complementation group 6 of the nucleotide excision repair-deficient rodent mutants. By means of in situ hybridization and Southern blot analysis of mouse x human somatic cell hybrids, the gene was localized to human chromosome 10q11-q21. An RFLP detected within the ERCC6 locus can be helpful in linkage analysis.  相似文献   

15.
With the ultimate purpose of testing the existence of possible differences in the effectiveness of the topoisomerase II catalytic inhibitor ICRF-193 (a bisdioxopiperazine) and the enzyme suppressor bufalin (a bufadienolide from toad venom) we have carried out a series of experiments aimed at inducing cytotoxicity as well as DNA and chromosome damage in transformed CHO cells. In order to assess any possible influence of DNA repair capacity of the treated cells on the final outcome, we have made use of the repair-defective CHO mutant EM9, which shows a defect in DNA single- and double-strand breaks repair for comparison with its repair-proficient parental line AA8.Our results seem to indicate that, while both ICRF-193 and bufalin suppress cell growth and result in a clear inhibition of topoisomerase II catalytic activity, only ICRF-193 has been shown as able to induce both chromosome and DNA damage, with a more pronounced effect in the CHO mutant EM9 than in the repair-proficient line AA8.  相似文献   

16.
ERCC1-XPF, through its role in nucleotide excision repair (NER), is essential for the repair of DNA damage caused by UV light. ERCC1-XPF is also involved in recombinational repair processes distinct from NER. In rodent cells chromosome aberrations are a common consequence of UV irradiation. We have previously shown that ERCC1-deficient cells have a lower ratio of chromatid exchanges to breaks than wild type cells. We have now confirmed this result and have shown that XPF-deficient cells also have a lower ratio than wild type. However, cells deficient in the other NER genes, XPD, XPB and XPG, all have the same ratio of exchanges to breaks as wild type. This implies that ERCC1-XPF, but not other NER proteins, is involved in the formation of UV-induced chromosome aberrations, presumably through the role of ERCC1-XPF in recombinational repair pathways rather than NER. We suggest that ERCC1-XPF may be involved in the bypass/repair of DNA damage in replicating DNA by an exchange mechanism involving single strand annealing between non-homologous chromosomes. This mechanism would rely on the ability of ERCC1-XPF to trim non-homologous 3' tails.  相似文献   

17.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

18.
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability.  相似文献   

19.
We have investigated DNA-mediated transfer of aminopterin resistance conferred by plasmid and UV resistance conferred by genomic DNA to the Chinese hamster ovary (CHO) cell line UV-135, a UV-sensitive mutant defective in nucleotide excision repair. Plasmid pSV2gpt-CaPO4 coprecipitates induced aminopterin resistance with equal efficiency in the 6-thioguanine-resistant, aminopterin-sensitive, repair-proficient parental line AA8-4(tg-1) and in UV-135(tg-2). Genetic and molecular evidence for genomic DNA-mediated transformation of UV-135(tg-2) cells with a putative excision repair gene were obtained by demonstrating that: (i) UV resistance transformation is dependent upon and specific for genomic DNA from excision repair-competent CHO cells: (ii) UV and drug coresistant colonies are bona fide transferants as verified by hybridization and Southern blotting analysis of pSV2gpt sequences in their genomic DNAs: (iii) confirmed transferants exhibit partial to near normal UV resistances for colony formation: and (iv) UVr transferants have near normal levels of excision repair capacity. The overall frequency of drug and UV resistance cotransformation was 8 X 10(8) per cell plated. This frequency was ca. 200- to 500-fold greater than that expected from coincident but independent UVr reversion and plasmid gene transfer events. DNA transfer techniques with this CHO system will be useful for further analysis of the essential structural DNA sequences, gene cloning, and expression of functional excision repair genes.  相似文献   

20.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号