首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To determine the inactivation effect of X-ray treatments on Cronobacter ( E. sakazakii ) in tryptic soy broth (TSB), skim milk (0% fat), low-fat milk (1% and 2%) and whole-fat milk (3·5%).
Methods and Results:  X-rays were produced using the RS 2400 generator system (Rad Source Technologies Inc.). Cronobacter (in TSB), inoculated skim milk (0% fat), low-fat milk (1% and 2% fat) and whole-fat milk (3·5% fat) were treated with 0·0, 0·1, 0·5, 0·75, 1·0, 2·0, 3·0, 4·0, 5·0 and 6·0 kGy X-ray doses. Surviving bacteria in the TSB and inoculated milk, before and after treatment, were enumerated using plating method onto trypticase soy agar. Greater than 7·0-log CFU reduction in Cronobacter population was observed with 4·0, 5·0, 6·0, 6·0 and 6·0 kGy X-ray in the TSB, skim milk, 1% fat milk, 2% fat milk and 3·5% fat milk, respectively.
Conclusions:  Treatment with X-rays significantly ( P  <   0·05) reduced Cronobacter to less than detectable limits (<1 log CFU ml−1) in skim milk at 5·0 kGy and milk with 1% fat content and greater at 6·0 kGy dose levels. The D-value for Cronobacter in TSB was significantly ( P  <   0·05) lower than those in milk samples.
Significance and Impact of the Study:  Treatment with X-rays could be an effective and safe alternative technology to control pathogenic bacteria ( Cronobacter ) in the dairy industry.  相似文献   

2.
Aim:  To determine D - and z -values of Cronobacter species ( Enterobacter sakazakii ) in different reconstituted milk and special feeding formula and the effect of reconstitution of powdered milk and special feeding formula with hot water on the survival of the micro-organism.
Methods and Results:  Five Cronobacter species (four C. sakazakii isolates and C. muytjensii ) were heated in reconstituted milk or feeding formula pre-equilibrated at 52–58°C for various times or mixed with powdered milk or feeding formula prior to reconstitution with water at 60–100°C. The D -values of Cronobacter at 52–58°C were significantly higher in whole milk (22·10–0·68 min) than in low fat (15·87–0·62 min) or skim milk (15·30–0·51 min) and significantly higher in lactose-free formula (19·57–0·66 min) than in soy protein formula (17·22–0·63 min). The z -values of Cronobacter in reconstituted milk or feeding formula ranged from 4·01°C to 4·39°C. Water heated to ≥70°C and added to powdered milk and formula resulted in a > 4 log10 reduction of Cronobacter .
Conclusions:  The heat resistance of Cronobacter should not allow the survival of the pathogen during normal pasteurization treatment. The use of hot water (≥70°C) during reconstitution appears to be an effective means to reduce the risk of Cronobacter in these products.
Significance and Impact of the Study:  This study supports existing data available to regulatory agencies and milk producers that recommended heat treatments are sufficient to substantially reduce risk from Cronobacter which may be present in these products.  相似文献   

3.
Aims:  To determine the survival and growth characteristics of Cronobacter species ( Enterobacter sakazakii ) in infant wheat-based formulas reconstituted with water, milk, grape juice or apple juice during storage.
Methods and Results:  Infant wheat-based formulas were reconstituted with water, ultra high temperature milk, pasteurized grape or apple juices. The reconstituted formulas were inoculated with Cronobacter sakazakii and Cronobacter muytjensii and stored at 4, 25 or 37°C for up to 24 h. At 25 and 37°C, Cronobacter grew more (>5 log10) in formulas reconstituted with water or milk than those prepared with grape or apple juices ( c. 2–3 log10). The organism persisted, but did not grow in any formulas stored at 4°C. Formulas reconstituted with water and milk decreased from pH 6·0 to 4·8–5·0 after 24 h, whereas the pH of the formulas reconstituted with fruit juices remained at their initial pH values, c. pH 4·8–5·0.
Conclusions:  Cronobacter sakazakii and C. muytjensii can grow in reconstituted wheat-based formulas. If not immediately consumed, these formulas should be stored at refrigeration temperatures to reduce the risk of infant infection.
Significance and Impact of the Study:  The results of this study will be of use to regulatory agencies and infant formula producers to recommend storage conditions that reduce the growth of Cronobacter in infant wheat-based formulas.  相似文献   

4.
Aims:  To assess the ability of Listeria monocytogenes to form biofilm on different food-contact surfaces with regard to different temperatures, cellular hydrophobicity and motility.
Methods and Results:  Forty-four L. monocytogenes strains from food and food environment were tested for biofilm formation by crystal violet staining. Biofilm levels were significantly higher on glass at 4, 12 and 22°C, as compared with polystyrene and stainless steel. At 37°C, L. monocytogenes produced biofilm at significantly higher levels on glass and stainless steel, as compared with polystyrene. Hydrophobicity was significantly ( P  < 0·05) higher at 37°C than at 4, 12 and 22°C. Thirty (68·2%) of 44 strains tested showed swimming at 22°C and 4 (9·1%) of those were also motile at 12°C. No correlation was observed between swimming and biofilm production.
Conclusions:  L. monocytogenes can adhere to and form biofilms on food-processing surfaces. Biofilm formation is significantly influenced by temperature, probably modifying cell surface hydrophobicity.
Significance and Impacts of the Study:  Biofilm formation creates major problems in the food industry because it may represent an important source of food contamination. Our results are therefore important in finding ways to prevent contamination because they contribute to a better understanding on how L. monocytogenes can establish biofilms in food industry and therefore survive in the processing environment.  相似文献   

5.
Aims:  To examine the rate and the extent of spore formation in Anoxybacillus flavithermus biofilms and to test the effect of one key variable – temperature – on spore formation.
Methods and Results:  A continuous flow laboratory reactor was used to grow biofilms of the typical dairy thermophile A. flavithermus (strain CM) in skim milk. The reactor was inoculated with either a washed culture or a spore suspension of A. flavithermus CM, and was run over an 8·5 h period at three different temperatures of 48, 55 and 60°C. Change in impedance was used to determine the cell numbers in the milk and on the surface of the stainless steel reactor tubes. The biofilm developed at all three temperatures within 6–8 h. Spores formed at 55 and 60°C and amounted to approx. 10–50% of the biofilm. No spores formed at 48°C.
Conclusions:  The results suggest that both biofilm formation and spore formation of A. flavithermus can occur very rapidly and simultaneously. In addition, temperature variation has a considerable effect on the formation of spores.
Significance and Impact of the Study:  This information will provide direction for developing improved ways in which to manipulate conditions in milk powder manufacturing plants to control biofilms and spores of A. flavithermus .  相似文献   

6.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

7.
Aim:  To explore safe guidelines for manufacturers and consumers to prepare, handle and store dry infant formula (DIF) to protect infants against Cronobacter spp.
Methods and Results:  Selected strains (2.45, FSM 293, ATCC-12868, FSM-271) screened from 68 strains of Cronobacter spp . were used to study growth and survival in commercial DIF. Prototype growth patterns in Enterobacteriaceae enrichment broth (EEB) containing a cocktail comprised of ATCC 12868, ATCC 29004, ATCC 29544 and ATCC 51329 showed a rapid increase in cell count (2·0 log10 to 6·2 log10 CFU ml−1). Infant formula provided a better protective environment for the cells of Cronobacter strains than did buffered peptone water . Experiments on survival in inoculated (104–106 CFU ml−1) reconstituted infant formula (RIF), preparation temperature, the effect of preparation volume (one-serving or two-serving) and effect of storage at room temperature for up to 10 h provided information to develop consumer guidelines for DIF preparation and handling.
Conclusions:  Reconstituted DIF in water at >70°C in larger volumes, minimizing storage time before feeding and storing unused reconstituted formulate at <4°C, may reduce the risk of Cronobacter infection in infants.
Significance and Impact of the Study:  Meningitis, necrotizing enterocolitis and bacteremia in premature babies has been linked to contaminated milk powder and DIF; better handling practices may improve the safety of these foods for neonates.  相似文献   

8.
Aims:  To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors.
Methods and Results:  Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25°C, but not for 18 h at 4°C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4°C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3·0) revealed increased tolerance of the attached vs planktonic bacteria.
Conclusions:  Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance.
Significance and Impact of the Study:  Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks.  相似文献   

9.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

10.
Aims:  To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm.
Methods and Results:  Burkholderia sp. NK8 was solely or co-cultured with each of five other representative bacteria in microtitre dishes. Biofilm formation involving the strain NK8 was synergistically promoted by co-culturing with only Pseudomonas aeruginosa PAO1. Epifluorescent microscopy revealed that cells of the bacterial strain NK8 were viable and distributed randomly in the mixed-species biofilms. Enumeration of the attached cells on the surface of wells revealed that cells of the strain NK8 increased approx. 10-fold by the co-culture with the strain PAO1 compared to those by monoculture of the strain NK8, and the degradation activity of 3-chlorobenzoate by the dual-species biofilms was more promoted than that by the strain NK8-monocultured biofilms.
Conclusions:  Enhanced biofilm formation of Burkholderia sp. NK8 by the bacterial consortium occurred, but is determined by the partner bacterial species. The mixed-species biofilms have the advantage to degrade CBs on a solid surface.
Significance and Impact of the Study:  This study provides a significance of bacterial consortia on the biofilm formation and the degradation activity of Burkholderia sp. NK8, which contribute for complete degradation of chlorinated aromatics.  相似文献   

11.
Aims:  To determine the effect of a range of supplements on the bioconversion of linoleic acid to conjugated linoleic acid (CLA) by Bifidobacterium breve NCIMB 702258 in reconstituted skim milk (RSM).
Results:  Seven supplements (yeast extract, casein hydrolysate, tryptone, l -cysteine hydrochloride, sodium acetate, sodium butyrate and sodium propionate) were identified as increasing the bioconversion of linoleic acid to c9 , t 11 CLA. Using these supplements, the percentage bioconversion of linoleic acid (0·35 mg ml−l) to the c9 , t 11 CLA isomer was elevated from 15·5 ± 1·1% in 20% RSM (w/v) to 48·1 ± 2·2% in the supplemented RSM. Through additional supplementation of 20 mg m1−1 inulin and optimization of inoculum and linoleic acid concentration, the percentage bioconversion to c9 , t 11 CLA was increased to 55·0 + 3·2%.
Conclusions:  Through supplementation, the concentration of CLA produced by bifidobacteria in RSM can be increased to levels comparable to those observed in the synthetic medium cys-MRS.
Significance and Impact of the Study:  The impact of 22 supplements on the production of the c9 , t 11 CLA isomer by the strain B. breve NCIMB 702258 in milk has been determined. The results provide an understanding of the factors, which influence CLA production by bifidobacteria in RSM.  相似文献   

12.
Single-species microbial biofilm screening for industrial applications   总被引:2,自引:0,他引:2  
While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.  相似文献   

13.
Aims:  This study demonstrated the optimum growth of Bifidobacterium pseudocatenulatum G4 with prebiotics via statistical model.
Methods and Results:  Commercial prebiotics [inulin and fructooligosaccharide (FOS)], together with sorbitol, arabinan and inoculum rate, were tested by fractional factorial design to determine their impact on growth of Bif. pseudocatenulatum G4 in skim milk. At 48 h incubation, bacterial growth was mainly influenced by FOS and inoculum rate. Growth reduction was observed in all samples incubated for 72 h. Central composite design (CCD) was adopted using FOS and inoculum rate at 48 h incubation to develop the statistical model for optimization. The model predicted that 2·461 log CFU ml−1 produced the optimum growth increase of Bif. pseudocatenulatum G4. The combination that produced the optimum point was 2·86% FOS (g/v) and 0·67% inoculum rate (v/v).
Conclusion:  At optimum combination of inoculum rate and FOS, validation experiments recorded 2·40 ± 10·02 log CFU ml−1. The application in 1-l bioreactor for 24 h showed higher growth increase of 2·95 log CFU ml−1.
Significant and Impact of the Study:  Response surface methodology approach is useful to develop optimum synbiotics combination for strain G4 with FOS.  相似文献   

14.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

15.
This study investigated the in vitro effect of propolis ethanolic extract (PEE) on planktonic growth and biofilm forming abilities of five commercial probiotics (Enterol, Protexin, Normaflore, BioGaia and Linex). Broth microdilution method was used to investigate the susceptibility of the microbes of five commercial probiotics to PEE. Crystal violet assay was used for the quantitative assessment of biofilm formation and mature biofilm eradication tests. Effect of PEE on autoaggregation ability and swarming motility of Normaflore microbes was determined. Planktonic forms of probiotics showed varied susceptibilities with minimal inhibitory concentration values in the range of 100–800 µg/mL of PEE. However, low PEE concentrations significantly enhanced the planktonic growth of Linex and BioGaia microbes. Biofilm studies revealed that Enterol and Protexin were non-biofilm formers, while BioGaia, Linex and Normaflore showed weak biofilms, which were inhibited by 12.5, 25, and 800 µg/mL of PEE, respectively. PEE revealed double-face effect on the biofilms of Normaflore and Linex, which were enhanced at low concentrations of PEE and inhibited at higher concentrations. Interestingly, Normaflore biofilms were shifted from weak to strong biofilms at low PEE concentrations (12.5, 25, and 50 µg/mL). In conclusion, PEE has strain dependent controversial effects on the planktonic growth and biofilm forming ability of the tested probiotics, although high concentrations have inhibitory effect on all of them, low concentrations may have strain dependent prebiotic effect.  相似文献   

16.
Aims:  To determine the prevalence of Cronobacter spp. ( Enterobacter sakazakii ) in follow-on formula powders commercially available in European countries.
Methods and Results:  A total of 470 samples comprising 31 different products from 18 brand names belonging to seven companies were tested for the presence of Cronobacter species. No milk- or soy-based infant formula powders were found to contain Cronobacter species . However, two cereal-based infant drinks were positive for Cronobacter sakazakii . A review of the published cases spanning the past 48 years did not reveal any fatalities attributable to Cronobacter spp. in children over 3 months.
Conclusions:  The low incidence of Cronobacter in infant powdered drinks, the lack of fatal Cronobacter infections in infants greater than 3 months and the low incidence of Cronobacter -related reported illness in this age group indicated that ingestion of these products presents a low risk for the intended consumers.
Significance and Impact of the Study:  The risk posed to neonates from the consumption of infant formula contaminated with Cronobacter is clear. Risks associated with powdered follow-on formulae intended for consumption by older infants is now under consideration by the World Health Organization. Our data contributes to the body of knowledge available for the assessment of the risk to consumers from these food products.  相似文献   

17.
Aims:  To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor.
Methods and Results:  Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR–SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm.
Conclusion:  This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm.
Significance and Impact of the Study:  The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.  相似文献   

18.
Viable ultramicrocells in drinking water   总被引:1,自引:0,他引:1  
Aims:  To examine the diversity of cultivable 0·2 micron filtrate biofilm forming bacteria from drinking water systems.
Methods and Results:  Potable chlorinated drinking water hosts phylogenetically diverse ultramicrocells (UMC) (0·2 and 0·1  μ m filterable). UMC (starved or dwarf bacteria) were isolated by cultivation on minimal medium from a flow system wall model with polyvinyl chloride (PVC) pipes. All cultivated cells (25 different isolates) did not maintain their ultra-size after passages on rich media. Cultured UMC were identified by their 16S ribosomal DNA sequences. The results showed that they were closely related to uncultured and cultured members of the Proteobacteria, Actinobacteria and Firmicutes. The isolates of phylum Actinobacteria included representatives of a diverse set of Actinobacterial families: Micrococcaceae, Microbacteriaceae, Dermabacteraceae, Nocardiaceae and Nocardioidaceae.
Conclusions:  This study is the first to show an abundance of cultivable UMC of various phyla in drinking water system, including a high frequency of bacteria known to be involved in opportunistic infections, such as Stenotrophomonas maltophilia, Microbacterium sp., Pandoraea sp. and Afipia strains.
Significance and Impact of the Study:  Chlorinated tap water filtrate (0·2 and 0·1  μ m) still harbours opportunistic micro-organisms that can pose some health threat.  相似文献   

19.
Nutrient dynamics and successional changes in a lentic freshwater biofilm   总被引:3,自引:0,他引:3  
SUMMARY 1. Colonisation, species composition, succession of microalgae and nutrient dynamics in biofilms grown under light and dark conditions were examined during the initial phases of biofilm development in a lentic freshwater environment.
2. Biofilms were developed on inert (perspex) panels under natural illuminated and experimental dark conditions and the panels were retrieved for analysis after different incubation periods. Analysed parameters included biofilm thickness, algal density, biomass, chlorophyll a , species composition, total bacterial density and nutrients such as nitrite, nitrate, phosphate and silicate.
3. Biofilm thickness, algal density, biomass, chlorophyll a and species richness were significantly higher in light-grown biofilms, compared with dark-grown biofilms. The light-grown biofilms showed a three-phased succession pattern, with an initial domination of Chlorophyceae followed by diatoms (Bacillariophyceae) and finally by cyanobacteria. Dark-grown biofilms were mostly dominated by diatoms.
4. Nutrients were invariably more concentrated in biofilms than in ambient water. Nutrient concentrations were generally higher in dark-grown biofilms except in the case of phosphate, which was more concentrated in light-grown biofilms. Significant correlations between nutrients and biofilm parameters were observed only in light-grown biofilms.
5. The N : P ratio in the biofilm matrix decreased sharply in the initial 4 days of biofilm growth; ensuing N-limitation status seemed to influence biofilm community structure. The N : P ratios showed significant positive correlations with the chlorophycean fraction in both light and dark-grown biofilms, and low N : P ratio in the older biofilms favoured cyanobacteria. Our data indicate that nutrient chemistry of biofilm matrix shapes community structure in microalgal biofilms.  相似文献   

20.
Aims:  A range of new differential and confirmation plating media for some non-O157 Shiga toxin producing Escherichia coli (STEC) serotypes (O26, O103, O111, O145) and both sorbitol-positive and -negative O157 were evaluated using artificially contaminated samples.
Methods and Results:  Dairy products (raw milk, cheese made from pasteurized milk and raw milk), meat (ground beef, fermented meat) and cattle faeces were artificially contaminated using clinical STEC strains. Isolation efficiency was 100%, 82·3%, 88·5%, 65·9%, 64·3% and 15·8%, respectively, for an inoculum size of ≤100 CFU 25 g−1. The consecutive use of differential and confirmation media limited the incidence of false positive isolates from 0% for raw milk samples, cheese made from pasteurized milk and for fermented meat to 2·1% for cheese made from raw milk, and to 8·9% for ground beef.
Conclusions:  Data presented in this paper indicated that the efficiency of the applied isolation method was dependent on sample-to-sample variation but not on the inoculum size.
Significance and Impact of Study:  Data in this paper indicated that isolation of low levels of non-O157 and sorbitol-positive O157 STEC from food samples is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号