首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The tryptophan fluorescence emission intensity at 340 nm of monomeric phospholipase A2 from Agkistrodon piscivorus piscivorus increased about 70% upon addition of dipalmitoylphosphatidylcholine small unilamellar vesicles (DPPC SUV) at 25 degrees C. The emission spectrum was also blue-shifted 6-8 nm, suggesting that the environment of 1 or more tryptophan residues had become less polar. This effect of SUV on the phospholipase A2 fluorescence was independent of Ca2+ at 25 degrees C, and the apparent association constant for the interaction was approximately 1.7 x 10(4) M-1. The apparent Km for hydrolysis of DPPC SUV was equal to the inverse of the estimated association constant. In the absence of Ca2+, the change in fluorescence intensity decreased with increasing temperature. Thermodynamic analysis of this reversible, temperature-dependent fluorescence change indicated that the A. p. piscivorus monomer phospholipase A2 interacts only with SUV in the true gel phase existing below the pretransition of gel to "ripple" phase lipid in the absence of Ca2+. In contrast, the fluorescence intensity change upon addition of SUV in the presence of Ca2+ was independent of temperature over the range of 25-48 degrees C. Under these conditions, hydrolysis of the lipid occurred concomitantly with the change in fluorescence which could not be reversed by the addition of EDTA. With a nonhydrolyzable analog of DPPC, however, the fluorescence changes upon mixing of SUV, Ca2+, and phospholipase A2 were reversible and temperature-dependent. Thus, the apparent irreversibility of the change in fluorescence observed with Ca2+ and DPPC SUV was correlated with hydrolysis of the vesicles. These results indicate that the magnitude of the initial interaction of enzyme with substrate is reversible, is Ca2+-independent, depends upon the lipid state, and is quantitatively correlated to the maximum rate of hydrolysis.  相似文献   

2.
The biochemical properties of the enzymes involved in phosphatidylinositol (PI) turnover in higher plants were investigated using the plasma membrane isolated from tobacco suspension culture cells by aqueous two-phase partitioning. Submicromolar concentrations of Ca2+ inhibited PI kinase and phosphatidylinositol 4-phosphate (PIP) kinase and stimulated phospholipase C. Diacylglycerol (DG) kinase was inhibited by Ca2+, but required a higher concentration than the physiological level. From the above results we postulate the following scheme: signal coupled activation of phospholipase C produces IP3 which induces Ca2+ release from the intracellular Ca2+ compartment, the increased cytoplasmic Ca2+ in turn activates phospholipase C and causes a further increase of the cytoplasmic Ca2+ level. This inhibits PI kinase and PIP kinase and brings about a limited supply of PIP2, the substrate of phospholipase C. Consequently, IP3 production decreases and Ca2+ mobilization ceases. Then cytosolic Ca2+ returns to the stationary level by the Ca2+ pump at the plasma membrane and at the endoplasmic reticulum and Ca2+/H+ antiporter at the plasma membrane and at the tonoplast.  相似文献   

3.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

4.
The intracellular concentration of free Ca2+ was monitored by measuring the fluorescence of fura-2 loaded Human Erythroleukemia Cells. Neuropeptide Y (NPY) increased intracellular Ca2+ in a dose-dependent manner and the 50% effective concentration was 2 nM. Chelation of extracellular Ca2+ by EGTA did not reduce the NPY-mediated increase in cytoplasmic Ca2+, indicating that the increase in fluorescence was due to the release of intracellular Ca2+. A second dose of NPY, after intracellular Ca2+ had returned to basal levels, failed to elicit a response, indicating that the NPY receptor had undergone desensitization. In similar experiments, NPY increased the formation of inositol phosphates, suggesting that the mobilization of Ca2+ from intracellular stores in HEL cells was secondary to the generation of inositol phosphates and stimulation of phospholipase C.  相似文献   

5.
Staphylococcal alpha-toxin at subcytotoxic concentrations stimulated phosphatidylinositol turnover and arachidonic acid release in undifferentiated cultures of pheochromocytoma PC12 cells. Stimulation of phospholipase A2 but not C was dependent on extracellular calcium. Addition of staphylococcal alpha-toxin to PC12 cells caused a dose-dependent, biphasic increase in intracellular calcium measured by fura-2 fluorescence technique. Elevation of intracellular Ca2+ content occurred with a time course similar to those observed for stimulation of phospholipase A2. Alteration of membrane structure and formation of staphylococcal alpha-toxin pores facilitating an influx of Ca2+, represent the probable mechanisms by which phospholipases C and A2 are activated, respectively. These results suggest a possible involvement of Ca2+, phosphoinositides and arachidonic acid metabolites in the pathogenic action of staphylococcus alpha-toxin and caution against the general usage of this toxin as a permeabilizing agent to study stimulus-secretion coupling in secretory cells.  相似文献   

6.
We have shown that changes in fluorescence intensity for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum labelled with fluorescein isothiocyanate following the addition of Ca2+ can give the ratio of the two conformations (E1 and E2) of the ATPase. We show that the fluorescence response to Ca2+ is unaffected by Mg2+, phosphate or K+, implying that these ions bind equally well to the E1 and E2 conformations. A model is presented for phosphorylation of the ATPase by phosphate as a function of pH, Mg2+, K+ and Ca2+.  相似文献   

7.
The mode of phospholipase C activation in platelet cells induced by didecanoyl (C10)-phosphatidic acid (PA) was investigated with washed rabbit platelets. The C10-PA dose-dependently induced aggregation and serotonin secretion, as well as increases in cytoplasmic free Ca2+ concentration and 1,2-diacylglycerol formation. None of these responses was evoked unless Ca2+ had been added to the platelet suspension. Furthermore, under the conditions of various intracellular Ca2+ concentrations which were set by treatment of the cells with ionomycin and Ca2+, C10-PA promoted 1,2-diacylglycerol formation only at the Ca2+ concentration of 300 nM or higher, whereas thrombin induced the formation even at 100 nM Ca2+. These results suggest that PA activates platelet phospholipase C in cooperation with Ca2+ and contributes to platelet activation through such an effect.  相似文献   

8.
The role of cytosolic Ca2+ in signal transduction in stomatal guard cells of Commelina communis was investigated using fluorescence ratio imaging and photometry. By changing extracellular K+, extracellular Ca2+, or treatment with Br-A23187, substantive increases in cytosolic Ca2+ to over 1 micromolar accompanied stomatal closure. The increase in Ca2+ was highest in the cytoplasm around the vacuole and the nucleus. Similar increases were observed when the cells were pretreated with ethyleneglycol-bis-(o-aminoethyl)tetraacetic acid or the channel blocker La3+, together with the closing stimuli. This suggests that a second messenger system operates between the plasma membrane and Ca2+-sequestering organelle(s). The endogenous growth regulator abscisic acid elevated cytosolic Ca2+ levels in a minority of cells investigated, even though stomatal closure always occurred. Ca2+-dependent and Ca2+-independent transduction pathways linking abscisic acid perception to stomatal closure are thus indicated.  相似文献   

9.
The effects of Ca2+, lanthanide ions (Gd3+, La3+ and Pr3+) and membrane potential on the fluorescence of tryptophan and covalently bound fluorescein were analysed in native and fluorescein isothiocyanate (FITC)-labelled sarcoplasmic reticulum vesicles. The binding of Ca2+ and lanthanides to the Ca2+-ATPase increases the fluorescence intensity of tryptophan and decreases the fluorescence intensity of FITC; the dependence of these effects on cation concentration is consistent with the involvement of the high-affinity Ca2+-binding sites of the Ca2+-ATPase in the cation-induced fluorescence changes. The fluorescence of FITC-labelled sarcoplasmic reticulum vesicles is also influenced by membrane potential changes induced by ion substitution. Inside positive potential increases, while inside negative potential decreases, the fluorescence of bound FITC. Smaller potential-dependent changes in tryptophan fluorescence were also observed. The effects of Ca2+, lanthanides and membrane potential on the fluorescence of tryptophan and FITC are discussed in terms of the two major conformations of the Ca2+-ATPase (E1 and E2), that are assumed to alternate during Ca2+ transport. The observations support the suggestion [Dux, Taylor, Ting-Beall & Martonosi (1985) J. Biol. Chem. 260, 11730-11743] that the vanadate-induced crystals of Ca2+-ATPase represent the E2, while the Ca2+ and lanthanide-induced crystals the E1, conformation of the enzyme.  相似文献   

10.
Human platelets labelled with either [14C]arachidonic acid or [32P]orthophosphate were loaded or not with the Ca2+ fluorescent indicator quin 2. They were then incubated in the presence or in the absence of human thrombin (1 U/ml) in a medium where Ca2+ concentration was adjusted near zero or to 1 mM. Under these conditions, phospholipase A2 activity, as detected by the release of [14C]arachidonate and of its metabolites, or by the hydrolysis of [14C]phosphatidylcholine, was severely impaired in quin 2-loaded platelets upon removal of external Ca2+. However, Ca2+ was not required in non-loaded platelets, where a maximal phospholipase A2 activity was detected in the absence of external Ca2+. In contrast, phospholipase C action, as determined from the amounts of [14C]diacylglycerol, [14C]- or [32P]phosphatidic acid formed, appeared to be much less sensitive to the effects of quin 2 loading and of Ca2+ omission. By using various concentrations of quin 2, it was found that the inhibitory effect exerted against phospholipase A2 could be overcome by external Ca2+ only when the intracellular concentration of the calcium chelator did not exceed 2 mM. At higher concentrations averaging 3.5 mM of quin 2, phospholipase A2 activity was fully suppressed even in the presence of external Ca2+, whereas phospholipase C was still active, although partly inhibited. It is concluded that platelet phospholipase A2 requires higher Ca2+ concentrations than phospholipase C to display a maximal activity. By comparing platelet phospholipase A2 activity under various conditions with the values of cytoplasmic free Ca2+ as detected by quin 2 fluorescence, it is proposed that cytoplasmic free Ca2+ in control platelets stimulated with thrombin can attain concentrations above 1 microM, probably close to 5-10 microM, as recently determined with the photoprotein aequorin (Johnson, P.C., Ware, J.A., Cliveden, P.B., Smith, M., Dvorak, A.M. and Salzman, E.W. (1985) J. Biol. Chem. 260, 2069-2076).  相似文献   

11.
The effect of Ca2+, Mg2+, and Mn2+ on the initial rate of activation of human Factor X by the venom coagulant protein of Vipera russelli has been investigated. Neither Mg2+ nor Mn2+ alone support the reaction. Ca2+ is an essential activator and exhibits cooperative kinetics. Both Mg2+ and Mn2+ enhance the reaction cooperatively when Ca2+ is present at suboptimal concentrations. Similarly, Ca2+ quenches the intrinsic fluorescence of human Factor X in a cooperative manner. While neither Mg2+ nor Mn2+ by themselves affect the fluorescence of human Factor X, they decrease the cooperativity of the Ca2+ binding to the protein as judged by Hill plots of the Ca2+ -induced fluoresence quenching. EPR measurements indicate that there are three high affinity Mn2+ binding sites on human Factor X which can also bind Ca2+. Positive cooperativity was not observed for Mn2+ binding. These data indicate that Ca2+ can cause a conformational change of the Factor X molecule which allows the activation reaction to proceed. We propose that Mn2+ does not support the activation of human Factor X because it cannot induce a necessary conformational change in the absence of Ca2+.  相似文献   

12.
The abilities of various divalent cations to enter the cytoplasm of mouse lacrimal acinar cells was examined under resting and agonist-stimulated conditions, by monitoring their effects on the fluorescence of cytosolic fura-2. In vitro, Ni2+, Co2+, and Mn2+ quenched the fura-2 fluorescence, whereas Sr2+, Ba2+, and La3+ produced an excitation spectrum and maximum brightness similar to Ca2+. Stimulation of mouse lacrimal acinar cells with methacholine (MeCh) caused a biphasic elevation of intracellular Ca2+ concentration [( Ca2+]i) resulting from a release of Ca2+ from intracellular pools followed by a sustained entry of extracellular Ca2+. Neither La3+ nor Ni2+ entered the cells under resting or stimulated conditions, but both blocked Ca2+ entry. Although both Co2+ and Mn2+ entered unstimulated cells, this process was not increased by MeCh. Both Sr2+ and Ba2+ were capable of supporting a sustained increase in fura-2 fluorescence in response to MeCh, indicating that these cations can enter the cells through the agonist-regulated channels. However, Sr2+, but not Ba2+, was capable of refilling the agonist-sensitive intracellular stores. These findings demonstrate dissociation of agonist-induced Ca2+ entry from intracellular Ca2+ pool refilling and thereby provide strong support for the recently modified version of the capacitative Ca2+ entry model according to which influx into the cytoplasm occurs directly across the plasma membrane and does not require a specialized cation channel directly linking the extracellular space and the intracellular Ca2+ stores.  相似文献   

13.
Phospholipase C from Clostridium perfringens induced the release of 45Ca2+ from isolated rat hepatocytes incubated at 0.1 mM extracellular Ca2+ with a time course similar to that for the action of phenylephrine. Under the conditions of these experiments, no significant damage to the plasma membrane was detected in the presence of phospholipase C. Little 45Ca2+ release was induced by bee venom phospholipase A2. At 1.3 mM extracellular Ca2+, both phospholipase enzymes stimulated the initial rate of 45Ca2+ exchange. Concentrations of phospholipase C comparable with those that stimulated 45Ca2+ release increased the rates of glucose release and O2 utilization by 70 and 20% respectively. An increase in the rate of O2 utilization but not glucose release was observed after the addition of phospholipase A2 to hepatocytes. The possible role for a cellular phospholipase C in the mechanism by which phenylephrine stimulates glycogenolysis in the liver cell is briefly discussed.  相似文献   

14.
Assembly of the tight junction: the role of diacylglycerol   总被引:27,自引:11,他引:16       下载免费PDF全文
Extracellular Ca2+ triggers assembly and sealing of tight junctions (TJs) in MDCK cells. These events are modulated by G-proteins, phospholipase C, protein kinase C (PKC), and calmodulin. In the present work we observed that 1,2-dioctanoylglycerol (diC8) promotes the assembly of TJ in low extracellular Ca2+, as evidenced by translocation of the TJ-associated protein ZO-1 to the plasma membrane, formation of junctional fibrils observed in freeze-fracture replicas, decreased permeability of the intercellular space to [3H]mannitol, and reorganization of actin filaments to the cell periphery, visualized by fluorescence microscopy using rhodamine-phalloidin. In contrast, diC8 in low Ca2+ did not induce redistribution of the Ca-dependent adhesion protein E-cadherin (uvomorulin). Extracellular antibodies to E-cadherin block junction formation normally induced by adding Ca2+. diC8 counteracted this inhibition, suggesting that PKC may be in the signaling pathway activated by E-cadherin-mediated cell-cell adhesion. In addition, we found a novel phosphoprotein of 130 kD which coimmunoprecipitated with the ZO-1/ZO-2 complex. Although the assembly and sealing of TJs may involve the activation of PKC, the level of phosphorylation of ZO-1, ZO-2, and the 130-kD protein did not change after adding Ca2+ or a PKC agonist. The complex of these three proteins was present even in low extracellular Ca2+, suggesting that the addition of Ca2+ or diC8 triggers the translocation and assembly of preformed TJ subcomplexes.  相似文献   

15.
Y Ozaki  Y Yatomi  S Kume 《Cell calcium》1992,13(1):19-27
Divalent ion mobilization in human platelets was evaluated with Fura-2 fluorescence changes induced by Ca2+, Sr2+, Ba2+ and Mn2+. Extracellular Ca2+, Sr2+ and Ba2+ all entered thrombin-stimulated platelets. These divalent ions were also able to refill the intracellular Ca2+ storage sites which had been depleted of Ca2+ by ionomycin treatment, and were released from the storage sites upon thrombin stimulation. However, only the refilling of the storage sites with Ca2+ and Sr2+, but not with Ba2+, were capable of suppressing the opening state of Ca2+ channels assessed with Mn2+ influx. Efflux of intracellularly accumulated divalent ions was observed with Ca2+ and Sr2+ but not with Ba2+. These findings indicate that there are subtle differences in the Ca(2+)-binding domains of the various systems involved in Ca2+ mobilization in platelets, some of which discriminate Ba2+ while accepting Sr2+.  相似文献   

16.
1. The binding of Ca2+ to plasma coagulation Factor XIII from man and from cow caused a small decrease in the intrinsic fluorescence of the protein with a dissociation constant of 0.1 mM. A similar decrease was observed with the thrombin-activated Factors (Factors XIIa). The decrease in protein fluorescence was also caused by both Ni2+ and Mn2+ but not by Mg2+. 2. 45Ca2+ binding was directly demonstrated by equilibrium dialysis. Ca2+ at 0.2 mM bound to Factor XIII (a2b2) and Factor XIIIa (a'2b2) but not to isolated b2-protein. A tight-binding site for Ca2+ is associated with the a-subunits. 3. The Ca2+ essential for the enzyme activity of Factor XIII from man, pig and cow can be replaced by Ni2+, Cu2+, La3+, Mn2+, Fe3+, Y3+, Co2+, Sr2+ or Tb3+, but not by Mg2+.  相似文献   

17.
Bovine cardiac troponin C was modified by N-(1-pyrene)maleimide at Cys-35 and Cys-84; the Ca2+-induced conformational changes were followed by measuring pyrene fluorescence. In isolated troponin C, the saturation of Ca2+, Mg2+-sites leads to a simultaneous increase in the pyrene monomer as well as to a decrease in the pyrene excimer fluorescence, whereas the saturation of Ca2+-specific sites results in a slight decrease in the fluorescence of pyrene monomer. Troponin T does not influence the dependence of pyrene-troponin C fluorescence on Ca2+ concentration. Within the equimolar complex of troponin C and troponin I, the saturation of Ca2+, Mg2+-sites has no effect on pyrene fluorescence, whereas the saturation of Ca2+-specific sites leads to a simultaneous decrease of both pyrene monomer and pyrene excimer fluorescence. It is supposed that troponin I diminishes the conformational changes in troponin C that are induced by the saturation of Ca2+, Mg2+-sites and enhances the conformational changes induced by the saturation of Ca2+-specific sites of troponin C.  相似文献   

18.
Using the [3H]inositol-labeled plasma membranes isolated from the differentiated human leukemic (HL-60) cells, the mode of inhibitory action of the Ca2+/phospholipid-dependent enzyme protein kinase C in the chemotactic peptide, fMet-Leu-Phe (fMLP)-induced, phospholipase C-mediated hydrolysis of phosphoinositides was investigated. In this cell-free membrane system, fMLP in the presence of GTP plus Ca2+, GTP in the presence of Ca2+, or Ca2+ alone could induce the formation of inositol bis- and trisphosphate (IP2 and IP3, respectively). When the intact cells were pre-treated with 12-O-tetradecanoylphorbol-13-acetate, the fMLP- and GTP-induced formation of IP2 and IP3 was markedly reduced but the Ca2+-induced reactions were not reduced in the isolated membranes. This result suggests that protein kinase C impairs the coupling of the GTP-binding protein to the phospholipase C. In another experiment, preincubation of the isolated membranes with pure rat brain protein kinase C inhibited the fMLP-induced formation of IP2, but did not inhibit the GTP- or Ca2+-induced reaction. Under the same conditions, protein kinase C did not inhibit the fMLP-, GTP-, or Ca2+-induced formation of IP3. This result suggests that protein kinase C impairs additionally the coupling of the fMLP receptor to the GTP-binding protein leading to the formation of IP2. The reason for the failure of protein kinase C to inhibit the fMLP-induced formation of IP3 in the cell-free membrane system is unknown, but several possible mechanisms are discussed.  相似文献   

19.
Mg2+, ATP-dependent Ca2+ accumulation in the rat myometrial mitochondria was investigated in complex experiment using Ca2+ isotope (45Ca2+) and Ca(2+)-sensitive label tetracycline. Monotonous increase of the fluorescence signal, insensitive to thapsigargin (100 nM) was observed with following establishing the stationary state of incubation at 2 min. which correlates with results obtained using isotope technique. Experiments with isotope label signify, that protonophore CCCP, ruthenium red and sodium azide, in concentration 1 microM, 10 microM and 10 mM respectively, totally inhibits the accumulation of the Ca ions in mitochondria. At the same time, in conditions of Mg2+, ATP-dependent Ca2+ accumulation modeling in these cellular structures, CCCP and sodium azide, used in the same concentration, diminished tetracycline fluorescence signal increase. In the same conditions, the introduction of the CCCP (1 mM) into the incubation medium at 75 sec. after initiation of the transport process induced reversible quenching of the tetracycline fluorescence signal to the level, observed in case of initial CCCP presence in the medium. According to data obtained in the experiment, using Ca2+ isotope, Ca(2+)-ionophore A-23187 induces both the reversible release of previously accumulated Ca ions, and cause reversible quenching of the tetracycline fluorescence signal to the level, observed in case of initial CCCP (1 mM) and sodium azide (10 mM) presence in the incubation medium. Conclusion was drawn that the thapsigargin-insensitive and CCCP, sodium azide and A-23187-sensitive tetracycline fluorescence increasing in case of modeling of Mg2+, ATP-dependent Ca2+ accumulation in myometrial mitochondria reflect the Ca2+ uniporter functioning in those subcellular structures.  相似文献   

20.
The changes in fluorescence of 1-anilino-8-naphthalenesulfonate (ANS-) have been used to determine binding of ligands to the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles, isolated from rabbit skeletal muscle. ANS- binds to sarcoplasmic reticulum membranes with an apparent Kd of 3.8 X 10(-5) M. The binding of ANS- had no effect on Ca2+ transport or Ca2+-dependent ATPase activity. EGTA, by binding endogenous Ca2+, increased the fluorescence intensity of bound ANS- by 10-12%. Subsequent addition of ATP, ADP, or Ca2+, in the presence or absence of Mg2+, reversed this change of fluorescence. The binding parameters, as determined by these decreases in fluorescence intensity, were as follows: for ATP, Kd = 1.0 X 10(-5) M, nH = 0.80; for ADP, Kd = 1.2 X 10(-5) M, nH = 0.89; and for Ca2+, Kd = 3.4 X 10(-7) M, nH = 1.8. The binding parameters for ITP and for the nonhydrolyzable analogue, adenyl-5'-yl-beta, gamma-methylene)diphosphate, were similar to those of ATP, but GDP, IDP, CDP, AMP, and cAMP had lower apparent affinities. Millimolar concentrations of pyrophosphate also decreased the fluorescence of bound ANS-, whereas orthophosphate caused a small (2-3%) increase in fluorescence in Ca2+-free media. Vanadate, in the presence of EGTA, decreased the fluorescence of bound ANS-with half-maximal effect at 4 X 10(-5) M. The changes of fluorescence intensity of bound ANS- appear to reflect conformational changes of the (Ca2+, Mg2+)-ATPase, consequent to ligand binding, with the low and high fluorescence intensity species corresponding to the E1 and E2 conformations, respectively. These appear to reflect similar conformational states of the (Ca2+, Mg2+)-ATPase to those reported by changes in intrinsic tryptophan fluorescence (DuPont, Y. (1976) Biochem, Biophys. Res. Commun. 71, 544-550).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号