首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Salt responses of enzymes from species differing in salt tolerance   总被引:10,自引:7,他引:10       下载免费PDF全文
Enzymes which are affected by the addition of inorganic salts during in vitro assay were extracted from salt-sensitive Phaseolus vulgaris, salt-tolerant Atriplex spongiosa, and Salicornia australis and tested for sensitivity to NaCl. In each case malate dehydrogenase, aspartate transaminase, glucose 6-phosphate dehydrogenase, and isocitrate dehydrogenase showed NaCl responses similar to those found for commercially available crystalline enzymes from other organisms. Enzymes extracted from plants grown in saline cultures showed no important changes in specific activity or salt sensitivity. Interaction of pH optima and NaCl concentrations suggests that enzymes may differ in the way they respond to salt treatment.  相似文献   

2.
A comparative study was made of the effects of high concentrations of NaCl, KCl and MgCl2 on two electron transport reactions of thylakoids isolated from a mesophyte, Pisum sativum and a halophyte, Aster tripolium . The rate of photosystem I mediated electron transport from reduced N, N, N', N'-tetramethyl- p -phenylenediamine (TMPD) to methyl viologen was determined polarographically, and photosystem II mediated electron flow from water to 2,6-dichlorophenolindophenol (DCPIP) was monitored spectrophotometrically. The response of photosystem II to increasing in vitro salt concentrations was similar for thylakoids isolated from both A. tripolium and P. sativum , but differences in the response of photosystem I to salinity changes were observed for the two species. Increasing NaCl, KCl and MgCl2 concentrations produced similar patterns of response of photosystem I activity in P. sativum thylakoids, whilst for A. tripolium KCl induced a completely different response pattern compared to NaCl and MgCl2. The salinity of the culture medium in which A. tripolium was grown also had an effect on both the absolute in vitro activities of photosystems I and II and their response to changes in salt concentration of the reaction media.  相似文献   

3.
Chara corallina is an obligate freshwater alga, while C. buckellii can be grown in salt and freshwater culture. When grown in fresh water, C. buckellii has electrophysiological properties similar to C. corallina, but when cultured in salt water, it has a less negative membrane potential and has a higher conductance. We show in internally perfused, tonoplast-free cells that the ATP-dependence of the two species cultured in fresh water is similar, although C. buckellii hyperpolarizes at lower ATP concentrations. We determined the pump parameters in perfused and intact cells. Using both techniques, C. corallina and C. buckellii cultured in fresh water show similar values of Ep, Gp and Ip. However, there is a significant difference between the two techniques: Ep is more negative (–400 to –700 mV) in perfused cells than in intact cells (–220 to –260mV); Gp is lower (0·1–0·2 versus 0·3–0·9 S m?2); and Ip is higher (40–60 versus 10–18 mA m?2). Salt-cultured C. buckellii was compared with freshwater C. buckellii using intact cells; Gp and Ep were similar, but Ip was much higher in salt-cultured cells (60 versus 15mA m?2). This higher pump rate is due to the depolarization of the membrane of salt-cultured algae, which is caused by a higher passive conductance. The significance of the less negative membrane potential and the higher rate of proton pumping is discussed with respect to the banding pattern and salt stress.  相似文献   

4.
The response of two rapid-cycling Brassica species differing in tolerance to seawater salinity was studied over a period of 24 days. In response to 8 dS m−1 salinity, the two Brassica species showed clear differences in the changes in relative growth rate (RGR), net assimilation rate (NAR) and leaf area ratio (LAR). The RGR of B. napus was slightly reduced by salinity, wheareas the RGR of B. carinata was largely reduced in the early stages of salinization. LAR of B. napus was affected by salinity in the later stages of growth and significantly correlated with the reduction in RGR. On the other hand, the NAR of B. carinata was decreased by salinity, corresponding to the decrease of the RGR of B. carinata. The NAR of B. napus was not significantly affected by salinity according to analysis of covariance. The shoot concentrations of Na, Mg and Cl increased while the concentrations of K and Ca decreased sharply during the first 5 days of salinization; subsequently, all ion concentrations remained relatively constant. The concentrations of Na, K, Ca, Mg and Cl in the root were similarly affected by salinity. There were no significant differences of ion concentrations between species that could be related to the differences in salt tolerance. Thus, the differences in salt tolerance between species can not be related to differences in specific-ion effects, but may be related to some factor that reduces the NAR of B. carinata during the early stages of growth.  相似文献   

5.
The usefulness of marker-assisted selection (MAS) to develop salt-tolerant breeding lines from a F2 derived from L. esculentum x L. pimpinellifolium has been studied. Interval mapping methodology of quantitative trait locus (QTL) analysis was used to locate more precisely previously detected salt tolerance QTLs. A new QTL for total fruit weight under salinity (TW) near TG24 was detected. Most of the detected QTLs [3 for TW, 5 for fruit number, (FN) and 4 for fruit weight (FW)] had low R 2 values, except the FW QTL in the TG180-TG48 interval, which explains 36.6% of the total variance. Dominant and overdominant effects were detected at the QTLs for TW, whereas gene effects at the QTLs for FJV and FW ranged from additive to partial dominance. Phenotypic selection of F2 familes and marker-assisted selection of F3 families were carried out. Yield under salinity decreased in the F2 generation. F3 means were similar to those of the F1 as a consequence of phentoypic selection. The most important selection response for every trait was obtained from the F3 to F4 where MAS was applied. While F3 variation was mainly due to the within-family component, in the F4 the FN and FW between-family component was larger than the within-family one, indicating an efficient compartmentalization and fixation of QTLs into the F4 families. Comparison of the yield of these families under control versus saline conditions showed that fruit weight is a key trait to success in tomato salt-tolerance improvement using wild Lycopersicon germplasm. The QTLs we have detected under salinity seem to be also working under control conditions, although the interaction family x treatment was significant for TW, thereby explaining the fact that the selected families responded differently to salinity.  相似文献   

6.
7.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

8.
Two isolates ofRhizobium trifolii differing in sodium chloride tolerance were isolated. One isolate could tolerate 0.9 and 0.5 mol NaCl/L, while the second tolerated 0.2 and 0.1 mol NaCl/L on solid agar and liquid media, respectively. The first isolate showed a higher capacity to accumulate sodium ions. The salinity-caused increase in free amino acids, proline and oxo acid pool was higher in the first isolate. The levels of ammonia-assimilating enzymes were maintained at a higher level in this isolate even at 0.5 mol NaCl/L.  相似文献   

9.
The main objective of this study was to evaluate the effects of salt stress on the photosynthetic electron transport chain using two chickpea lines (Cicer arietinum L.) differing in their salt stress tolerance at the germination stage (AKN 87 and AKN 290). Two weeks after sowing, seedlings were exposed to salt stress for 2 weeks and irrigated with 200 ml of 200 mM NaCl every 2 days. The polyphasic OJIP fluorescence transient and the 820-nm transmission kinetics (photosystem I) were used to evaluate the effects of salt stress on the functionality of the photosynthetic electron transport chain. It was observed that a signature for salt stress was a combination of a higher J step (VJ), a smaller IP amplitude, and little or no effect on the primary quantum yield of PSII (φPo). We observed for AKN 290 a shorter leaf life cycle, which may represent a mechanism to cope with salt stress. For severely salt-stressed leaves, an inhibition of electron flow between the PQ pool and P700 was found. The data also suggest that the properties of electron flow beyond PSI are affected by salt stress.  相似文献   

10.
Summary A normally grown crop of sunflower on red sandy loam soils was found to remove considerable quantities of chloride and sodium. On heavy clay soils with saline patches sunflower plants removed large quantities of sodium followed by chloride and sulphate. In view of its salt tolerance, it is suggested that intercropping or rotation with sunflower might help reduce soil salinity and improve soil conditions where salinity problems are coming up especially in heavy clay soils with low permeability. re]19720711  相似文献   

11.
A technique is described for X-ray microanalysis of unfixed, frozen, hydrated higher plant cells using a scanning electron microscope in conjunction with a cryostage. Freezing in liquid N2 is the only preparative step required. Using this method, ion distribution was compared in the roots of Zea mays L. (termed a salt excluder) and Hordeum vulgare L. (which is rather more tolerant), both grown in the presence of NaCl. Distinct differences were observed between the two species in Na, K and Cl distribution. Evidence is presented to support the hypothesis that reabsorption of Na from the xylem sap in the mature regions of the root may occur in salt-sensitive glycophytes such as Z. mays.  相似文献   

12.
Salt tolerance of five rhizobia strains was examined in broth cultures. Five levels of NaCl concentration were used and the optical density was taken as a measure for the vigour of bacterial growth. Rhizobium leguminosarum and R. meliloti were tolerant to high levels of salinity and growth curves in saline broth showed a similar pattern to the control level. Rhizobium japonicum, cowpea Rhizobium, and R. trifolii were intolerant to salt and showed a strong growth retardation with increasing salt concentration. Growth was inhibited at high levels of salinity. It is suggested that rhizobia sensitivity to salts may be partly responsible to the inhibition of nitrogen fixation by legumes growing under salt stress.  相似文献   

13.
The halophyte Suaeda maritima grows optimally in high concentrations(40–60% seawater) of salt. In these conditions the concentrationof salt in the apoplast of the leaves is at least 500 mM, aconcentration which severely inhibits the activity of cytoplasmicenzymes of both glycophytes and halophytes. The in vitro salttolerance of a number of cell wall enzymes was assayed in thepresence of a range of concentrations of NaCl. There was nosignificant inhibition of the activity of galactosidase, glucosidase,peroxidase or xyloglucan endo-transglycosylase extracted fromSuaeda maritima by in vitro concentrations of NaCl up to atleast 1 M. In vitro salt tolerance of cell wall enzymes wasnot restricted to the halophyte, similar enzymes from the non-halophilicrelative Kochia tricophylla, and from the glycophytes Vignaradiata and Cicer arietinum, were inhibited little, or not atall, by the same concentrations of salt. Pectin esterase wassomewhat less tolerant, but activity at 500 mM NaCl was stillgreater than at 0 mM NaCl in both Suaeda and Vigna. It is concludedthat these enzymes of the cell wall compartment are much moresalt-tolerant than cytoplasmic enzymes of higher plants. Theresults are discussed in relation to conditions thought to pertainin the apoplast. Key words: Apoplast, cell wall enzymes, halophyte, salt tolerance, Suaeda maritima  相似文献   

14.
15.

Key message

Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism.

Abstract

Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC–ESI–MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.  相似文献   

16.
Water permeability and cytoplasmic viscosity and streaming were investigated in seedlings of two Hordeum vulgare cultivars differing in salt tolerance. Six-day-old seedlings were grown for 4 additional days in Hoagland solution with and without 100 m M NaCl added.
Observations and measurements were made in subepidermal cells of the coleoptile using plasmolytic and centrifugation methods and recordings of the speed of movement of microsomes.
Water permeability was about the same in controls of both cultivars, and was decreased by NaCl stress, but decreased less in the tolerant cultivar. Cells from control plants of the stress tolerant variety had a higher cytoplasmic viscosity than cells from the moderately sensitive cultivar. Cytoplasmic viscosity in both cultivars decreased due to NaCl stress, and more so in the sensitive one. Cytoplasmic streaming was faster in the controls of the salt sensitive cultivar than in controls of the salt tolerant cultivar; NaCl had no significant effect on cytoplasmic streaming in both cultivars.
The specific responses of the cytoplasm of the sensitive and tolerant cultivars to the salt treatment reflect differences in its structure and composition. These differences in the cytoplasm already exist before exposure to salt stress but some alterations of cytoplasmic parameters (e.g. water permeability) were induced by the saline environment.  相似文献   

17.
18.
Fifty-two-day old plants of a salt tolerant line, S24 and a salt sensitive, Yecora Rojo were subjected for 15 days to 125 mol·m−3 NaCl in Hoagland’s nutrient solution under glass-house conditions. The dry matter of shoots and roots of the salt tolerant line was significantly greater over all time intervals in saline substrate than the salt sensitive line, Yecora Rojo. In the leaves of salt-treated former line concentration of Na+ and Cl was lower as compared to the latter line. The lower Na+ and Cl concentrations in the leaves of S24 were found to be associated with lower transport of these ions to the shoots whereas the reverse was true for Yecora Rojo. The lines did not differ in accumulation of either ion in roots. It is concluded that salt tolerance in these two genotypes of spring wheat is associated with restricted accumulation of toxic Na+ and Cl ions to the shoots or with restricted transport.  相似文献   

19.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号