首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extent of the oxygen effect for cell survival was studied in diploid and haploid wild-type yeast and in mutants beloning to the rad2, rad6 and rad50 epistatic group. In haploids, reduced oxygen enhancement ratios were found in rad52, rad6 and rad18. The latter two also showed some influence of the mating type. In diploids the oxygen effect was decreased in rad2, rad52 and rad18.  相似文献   

2.
Diploid wild-type cells of Saccharomyces and cells homozygous for one of the single genes rs1, rs2 of the two alleles of the rs3 gene (rad 2 gene) were tested for their response to ionizing irradiation in the presence and absence of oxygen. Both immediate and delayed plating (agar-holding) techniques were used.An identical oxygen enhancement ratio (OER) of 2.5 was observed in rs1rs1, rs2rs2 cells and the wild type. In rs3?1rs3?1 and rs3?2rs3?2 cells the OER was reduced. Their sensitivity to ionizing irradiation in oxic conditions was the same as that of the wild type.rs2rs2 cells showed an increase in relative sensitivity by a factor of 4 in both conditions of irradiation. The relative sensitivity of rs1rs1 cells was increased by a factor of 2.5 in hypoxic conditions and the sensitivity in hypoxia was identical to that of wild type cells in oxic conditions. In contrast to haploid rs1 cells the oxygen effect was fully expressed in diploid rs1rs1 cells.The results on diploid strains are discussed in terms of three independent genetically determined repair systems in Saccharomyces. The expression of these systems is influenced by ploidy.  相似文献   

3.
Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.  相似文献   

4.
    
Unveiling the intrinsic effects of Ruddlesden‐Popper (RP) series An+1BnO3n+1 (A = La, B = Ni, Co, Mn, Cu, n = 1, 2 and 3) catalysts is essential in order to optimize the activity of oxygen reduction reaction (ORR) and evolution reaction (OER). Here, it is demonstrated that the oxygen vacancy is not the key point for RP to realize high ORR and OER activity at high temperature. Instead, interstitial O2? with high concentration and fast migration, and lattice oxygen with high activity are favorable for the high‐temperature catalytic activity. Aliovalent cation doping is an effective strategy to modify the catalytic activity. For the RP catalysts, low‐valence ion doping does not introduce oxygen vacancies, which suppresses the activity of lattice oxygen and decreases the interstitial O2? concentration; whereas high‐valence ion doping enhances the interstitial O2– concentration and the lattice oxygen activity. The evaluations of six RP series (La2NiO4, La2CoO4, La3Co2O7, La4Ni3O10, La2MnO4, and La2CuO4 based) and twenty samples as oxygen electrodes for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) demonstrate that this finding is applicable to all the selected RP series.  相似文献   

5.
    
Black phosphorus (BP) is a new rediscovered layered material, which has attracted enormous interests in the field of electrocatalysis. Recent investigations reveal that bulk BP is a promising electrocatalyst for oxygen evolution reactions (OER), whereas its bulk crystal structure restricts sufficient active sites for achieving highly efficient OER catalytic performances. Toward this end, few‐layer BP nanosheets prepared by facile liquid exfoliation are applied as electrocatalysts and exhibit preferable electrocatalytic OER activity in association with structural robustness; subsequently, the dependence of current density and applied bias potential on the concentration of OH? has also been uncovered. Most importantly, we are aware that reduction in the thickness of BP nanosheets would generate extra active sites from the ultrathin planar structure and complimenting to the electrocatalytic activities. It is further anticipated that the current work might provide further implementation about the OER performance of BP nanosheets, thereby, offering extendable availabilities for BP‐based electrocatalysts in constructing high‐performance OER devices.  相似文献   

6.
    
Hydrogen is a promising alternative fuel for efficient energy production and storage, with water splitting considered one of the most clean, environmentally friendly, and sustainable approaches to generate hydrogen. However, to meet industrial demands with electrolysis‐generated hydrogen, the development of a low‐cost and efficient catalyst for the oxygen evolution reaction (OER) is critical, while conventional catalysts are mostly based on precious metals. Many studies have thus focused on exploring new efficient nonprecious‐metal catalytic systems and improving the understandings on the OER mechanism, resulting in the design of catalysts with superior activity compared with that of conventional catalysts. In particular, the use of multimetal rather than single‐metal catalysts is demonstrated to yield remarkable performance improvement, as the metal composition in these catalysts can be tailored to modify the intrinsic properties affecting the OER. Herein, recent progress and accomplishments of multimetal catalytic systems, including several important groups of catalysts: layered hydroxide, spinel, and amorphous metal oxides along with the theoretical principles of activity enhancement in multimetal systems are reviewed. Finally, this is concluded by discussing remaining challenges to achieve further improvements of OER catalyst activities.  相似文献   

7.
8.
9.
    
The fabrication of highly active and robust hexagonal ruthenium oxide nanosheets for the electrocatalytic oxygen evolution reaction (OER) in an acidic environment is reported. The ruthenate nanosheets exhibit the best OER activity of all solution‐processed acid medium electrocatalysts reported to date, reaching 10 mA cm?2 at an overpotential of only ≈255 mV. The nanosheets also demonstrate robustness under harsh oxidizing conditions. Theoretical calculations give insights into the OER mechanism and reveal that the edges are the origin of the high OER activity of the nanosheets. Moreover, the post OER analyses indicate, apart from coarsening, no observable change in the morphology of the nanosheets or oxidation states of ruthenium during the electrocatalytic process. Therefore, the present investigation suggests that ruthenate nanosheets are a promising acid medium OER catalyst with application potential in proton exchange membrane electrolyzers and beyond.  相似文献   

10.
    
We examined the dependence of hydroxyl radical production on the concentration of 15 nm citrate-capped AuNPs and dose using coumarin-3-carboxylic acid in phosphate buffered saline (PBS), and investigated the radiosensitisation of different concentration AuNPs on human cervix carcinoma HeLa cells through clonogenic survival assay for X-rays and carbon ions. The enhancement factor of AuNPs for hydroxyl radical production reached a maximum 3.66 for X-rays at the concentration of 0.1 μg/mL while the maximum was 5.52 for carbon ions in presence of 1.0 μg/mL AuNPs in PBS. At 50% survival level, the sensitizer enhancement ratios of X-rays and carbon ions varied from 1.14 to 2.88 and from 1.27 to 1.44, respectively, when cells were co-cultured with 1.5–15.0 μg/mL AuNPs. Our data indicate AuNPs showed radiosensitisation in terms of hydroxyl radical production and cell killing for low- and high-LET radiations. The concentration of AuNPs in PBS and cells played an important role in radiosensitizing effect. Based on the fact-the AuNPs in PBS could improve the production of hydroxyl radical and no accumulation of cells in the G2/M phase was observed, we deduce that the increment of hydroxyl radical production with AuNPs provided a mechanism for radiosensitisation.  相似文献   

11.
    
The development of high‐efficiency bifunctional electrocatalyst for oxygen reduction and evolution reactions (ORR/OER) is critical for rechargeable metal–air batteries, a typical electrochemical energy storage and conversion technology. This work reports a general approach for the synthesis of Pd@PdO–Co3O4 nanocubes using the zeolite‐type metal–organic framework (MOF) as a template. The as‐synthesized materials exhibit a high electrocatalytic activity toward OER and ORR, which is comparable to those of commercial RuO2 and Pt/C electrocatalysts, while its cycle performance and stability are much higher than those of commercial RuO2 and Pt/C electrocatalysts. Various physicochemical characterizations and density functional theory calculations indicate that the favorable electrochemical performance of the Pd@PdO–Co3O4 nanocubes is mainly attributed to the synergistic effect between PdO and the robust hollow structure composed of interconnected crystalline Co3O4 nanocubes. This work establishes an efficient approach for the controlled design and synthesis of MOF‐templated hybrid nanomaterials, and provides a great potential for developing high‐performance electrocatalysts in energy storage and conversion.  相似文献   

12.
The photosynthetic characteristics of leaves of atrazine-resistant and-susceptible biotypes of several weed species (Solanum nigrum, Senecio vulgaris, Epilobium ciliatum and Chenopodium album) were compared using the photoacoustic method. Analysis of the dependence of the photoacoustic signal of the modulation frequency indicated that, in Solanum, Epilobium and Senecio, the relative quantum yield of O2 evolution (estimated by the ratio of the amplitude of the O2 signal, AOX, to that of the photothermal signal, APT) was substantially reduced in the atrazine-resistant mutant, without any changes in the O2 diffusion characteristics of the leaves. In contrast, in Chenopodium, atrazine-resistance was associated with a concomitant change in and in the leaf diffusion parameters. This latter change suggests that the leaf internal anatomy was modified in the resistant Chenopodium. Measurements of the Emerson enhancement indicated that the reduction of observed in the atrazine-resistant mutants was caused by a marked decrease in the photochemical potential of PS II (). The study of the light intensity dependence of the AOX/APT ratio showed that saturation of O2 evolution occurred at the same light level (around 2000 mol m-2 s-1) in both types of plants. However, the relative maximal rate of O2 evolution was slightly lower (-10%) in the atrazine-resistant biotype as compared to the wild type. Reduced and light-saturated rate of O2 evolution were also measured in atrazine-resistant weed biotypes using a conventional Clark-type O2 electrode.Abbreviations AOX modulated O2 evolution component of the photoacoustic signal - APT photothermal component of the photoacoustic signal - Atrazine 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine - E Emerson enhancement - PS II and PS I photosystems II and I, respectively - QA primary electron acceptor of PS II - QB secondary electron acceptor of PS II - quantum yield of O2 evolution  相似文献   

13.
Farquhar and Gan [10] have proposed a model for the spatial variation in the isotopic enrichment of H218O across a leaf, which is specifically formulated for monocotyledoneous leaves. The model is based on the interaction between mass fluxes longitudinally within the xylem, and fluxes laterally through veinlets into the lamina mesophyll, where moisture leaves the leaf through transpiration. The lighter, more abundant, molecule H216O escapes preferentially with the evaporating water, resulting in the enrichment of H218O at these sites. Enriched water diffuses throughout the leaf, and it is this spatial distribution of enriched water which the model seeks to capture. In this paper we present a general formulation of the model in terms of mass flux, extending it to include variable transpiration rates across the leaf surface, as well as a tapering xylem. Solutions are developed for the general case and, since the solutions present in the form of Kummer functions, properties are established as well as methods for estimating the solutions under certain conditions relevant to the biology. The model output is compared with Gans data ([14, 15]) collected from maize plants.  相似文献   

14.
    
IntroductionThe increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia.MethodsThe RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01–30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations.ResultsThe SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses.ConclusionWe realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.  相似文献   

15.
Sex ratio theory provides a powerful source of testable predictions about sex allocation strategies. Although studies of invertebrates generally support predictions derived from the sex ratio theory, evidence for adaptive sex ratio biasing in vertebrates remains contentious. This may be due to the fact that most studies of vertebrates have focused on facultative adjustment in relation to maternal condition, rather than processes that might produce uniform sex biases across individuals. Here, we examine the effects of local resource enhancement (LRE) and local resource competition (LRC) on birth sex ratios (BSRs). We also examine the effects of sex differences in the costs of rearing male and female offspring on BSRs. We present data from 102 primate species and show that BSRs are skewed in favour of the dispersing sex in species that do not breed cooperatively, as predicted by the LRC model. In accordance with the LRE model, BSRs are generally skewed in favour of the more beneficial sex in cooperatively breeding primate species. There is no evidence that BSRs reflect the extent of sexual size dimorphism, an indirect measure of the costs of rearing male and female offspring. These analyses suggest that adaptive processes may play an important role in the evolution of BSRs in vertebrates.  相似文献   

16.
    
The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm?2 at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec?1 in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.  相似文献   

17.
This experiment investigated the effects of intensity of exercise on excess postexercise oxygen consumption (EPOC) in eight trained men and eight women. Three exercise intensities were employed 40%, 50%, and 70% of the predetermined maximal oxygen consumption (VO2max). All ventilation measured was undertaken with a standard, calibrated, open circuit spirometry system. No differences in the 40%, 50% and 70% VO2max trials were observed among resting levels of oxygen consumption (V02) for either the men or the women. The men had significantly higher resting VO2 values being 0.31 (SEM 0.01) 1·min–1 than did the women, 0.26 (SEM 0.01) 1·min–1 (P < 0.05). The results indicated that there were highly significant EPOC for both the men and the women during the 3-h postexercise period when compared with resting levels and that these were dependent upon the exercise intensity employed. The duration of EPOC differed between the men and the women but increased with exercise intensity: for the men 40% – 31.2 min; 50% – 42.1 min; and 70% – 47.6 min and for the women, 40% – 26.9 min; 50% – 35.6 min; and 70% – 39.1 min. The highest EPOC, in terms of both time and energy utilised was at 70% VO2max. The regression equation for the men, where y=O2 in litres, and x=exercise intensity as a percentage of maximum was y=0.380x + 1.9 (r 2=0.968) and for the women is y=0.374x–0.857 (r 2=0.825). These findings would indicate that the men and the women had to exercise at the same percentage of their VO2max to achieve the maximal benefits in terms of energy expenditure and hence body mass loss. However, it was shown that a significant EPOC can be achieved at moderate to low exercise intensities but without the same body mass loss and energy expenditure.  相似文献   

18.
    
Leaf gas exchange and leaf water (18)O enrichment (Delta(18)O(L)) were measured in three Clusia species under field conditions during dry and wet seasons and in Miconia argentea during the dry season in the Republic of Panama. During the dry season, all three Clusia species used crassulacean acid metabolism (CAM); during the wet season Clusia pratensis operated in the C(3) mode, while Clusia uvitana and Clusia rosea used CAM. Large departures from isotopic steady state were observed in daytime Delta(18)O(L) of the Clusia species, especially during the dry season. In contrast, daytime Delta(18)O(L) was near isotopic steady state in the C(3) tree M. argentea. Across the full data set, non-steady-state predictions explained 49% of variation in observed Delta(18)O(L), whereas steady-state predictions explained only 14%. During the wet season, when Delta(18)O(L) could be compared with Clusia individuals operating in both C(3) and CAM modes, steady-state and non-steady-state models gave contrasting predictions with respect to interspecific variation in daytime Delta(18)O(L). The observed Delta(18)O(L) pattern matched that predicted for the non-steady state. The results provided a clear example of how non-steady-state control of leaf water (18)O dynamics can shift the slope of the relationship between transpiration rate and daytime Delta(18)O(L) from negative to positive.  相似文献   

19.
    
AimThe purpose of this study is to optimize treatment planning in carbon ion radiotherapy, taking into account the effect of tumour hypoxia.BackgroundIn conventional hadron therapy, the goal is to create a homogenous dose in the tumour area and, thus, achieve a uniform cell survival level. Since the induction of a specific damage to cells is directly influenced by the level of hypoxia in the tissue, the varying oxygen pressure in the different regions of hypoxic tumours would disrupt the uniformity of the cell survival level.Materials and methodsUsing the Geant4 Monte Carlo Code, the physical dose profile and dose-averaged linear energy transfer were calculated in the tumour. Then, the oxygen enhancement ratio in different areas of the tumour were compared with different pressures.ResultsModulations of radiation intensities as well as energies of ion beams were calculated, both considering and disregarding the effect of hypoxia, and the required dose profiles were compared with each other. Cell survival levels were also compared between the two methods. An equation was obtained for re-modulating the beams in the presence of hypoxia, and radiation weighting factors were extracted for the beam intensities.ConclusionThe results show that taking the effect of hypoxia into account would cause the reduction of average doses delivered to the tumour tissues up to 1.54 times. In this regard, the required dose is reduced by 1.63 times in the healthy tissues before the tumour. This will result in an effective protection of healthy tissues around the tumour.  相似文献   

20.
    
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. However, the imaging speed and sensitivity are currently limited by the noise of the light beam probing the Raman process. In this paper, we present a fast non-average denoising and high-precision Raman shift extraction method, based on a self-reinforcing signal-to-noise ratio (SNR) enhancement algorithm, for SRS spectroscopy and microscopy. We compare the results of this method with the filtering methods and the reported experimental methods to demonstrate its high efficiency and high precision in spectral denoising, Raman peak extraction and image quality improvement. We demonstrate a maximum SNR enhancement of 10.3 dB in fixed tissue imaging and 11.9 dB in vivo imaging. This method reduces the cost and complexity of the SRS system and allows for high-quality SRS imaging without use of special laser, complicated system design and Raman tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号