首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the mortality and aerobic decomposition of light- and phosphorus-limited cultures of Oscillatoria limnetica, a dominant phytoplankton species in shallow, eutrophic Lake Loosdrecht (The Netherlands). When placed in the dark at 20 °C, most cells died and lysed within twelve days. The labile organic matter was completely decomposed within three weeks. Absorbance spectra indicated that blue green algae may contributed significantly to the refractory dissolved substances in the lake. Refractory particulate matter constituted from 7 to 24% of the biomass of O. limnetica, depending on the growth rate before incubation in the dark. The decomposition rate of this fraction was 0.005 d–1. On a basis of a steady-state model of the dynamics of phytoplankton detritus, the areal organic dry weight concentration of the detritus in the lake is ca. 60 g m–2. This means the quantities of detritus in the seston and epipelon are about equal.  相似文献   

2.
Light conditions in laboratory scale enclosures (LSE) of shallow, eutrophic Lake Loosdrecht (The Netherlands), including a method for simulating a natural incident light course, are described. Total PAR (400–700 nm) and spectral irradiance distribution were measured at sestonic chlorophyll a and dry weight concentrations 100 mg m–3 and 16 g m–3, respectively. Phytoplankton was dominated by Oscillatoria spp. The euphotic depth (Z eu) was 0.7–1.0 m. Shortly after filling the LSE with lake water, diffuse attenuation coefficients ranged from 14 m–1 for blue to 5 m–1 for red light. Around Z eu, attenuation in the blue region was markedly lower and irradiance reflectance (R) continued to increase; these anomalies were caused by lateral incident light from the LSE's waterbath. Spectrophotometry indicated that absorption was mainly by particles, but dissolved humic substances (gilvin) were also important. The particles were likely to be dominated by detritus absorbing more blue relative to red light. Subsurface R in lake water in the LSE had a maximum around 705 nm and low values in the blue band, but was lower than that previously reported for measurements in situ. Wash-out of detritus, presumably both dissolved and particulate fractions, by flow-through with synthetic medium, greatly affected the spectral reflectance measured outside the LSE. The maximum value of R decreased from 0.022 to 0.009, and the peak shifted to 550 nm.  相似文献   

3.
Based on experiments of periphyte response to different trophic levels and their impact on macrophyte production, it was found that the periphyte biomass increased with the nutrient concentrations. Increased trophic level and periphyte biomass resulted in decreased macrophyte photosynthesis. It was suggested that the periphytes could cause resilience and hysteresis in the system shifts between macrophyte and phytoplankton domination. Other factors, such as fish farming, storm induced waves and mechanical destruction, and high water levels could be the perturbations during the system shifts, but these are not the key factors. Instead, the nutrient loading and periphyte abundance could determine the shift in lake ecosystem between macrophyte and phytoplankton domination. This finding could theoretically elucidate the mechanism of ecosystem shifts between macrophyte and phytoplankton domination.  相似文献   

4.
Based on experiments of periphyte response to different trophic levels and their impact on macrophyte production,it was found that the periphyte biomass increased with the nutrient con-centrations. Increased trophic level and periphyte biomass resulted in decreased macrophyte photo-synthesis. It was suggested that the periphytes could cause resilience and hysteresis in the system shifts between macrophyte and phytoplankton domination. Other factors,such as fish farming,storm induced waves and mechanical destruction,and high water levels could be the perturbations during the system shifts,but these are not the key factors. Instead,the nutrient loading and periphyte abundance could determine the shift in lake ecosystem between macrophyte and phytoplankton domination. This finding could theoretically elucidate the mechanism of ecosystem shifts between macrophyte and phytoplankton domination.  相似文献   

5.
Romo  Susana  Miracle  Rosa 《Hydrobiologia》1994,275(1):153-164
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands.  相似文献   

6.
A. F. Richter 《Aquatic Ecology》1986,20(1-2):165-172
Biomanipulation as a tool for lake restoration is discussed mainly using literature data. It is based on the exploitation of the interactions both within and between the trophic levels in an aquatic ecosystem. Important among the interactions are: competition for light and nutrients between aquatic macrophytes and phytoplankton and among different phytoplankton species; grazing by planktonic and benthic filter feeders; and size-selective predation by fish. In several case studies biomanipulation has proved to be successful in restorating mildly eutrophic small waterbodies. However, for long-term stability of the restored ecosystems supplementary measures like reducing the external nutrient loadings are needed. The feasibility of the different biomanipulation measures to improve the water quality in shallow Dutch lakes is discussed. Preliminary results on biomanipulation experiments in enclosures withOscillatoria agardhii and the benthic filter feederDreissena polymorpha are given.  相似文献   

7.
Phytoplankton growth in the shallow, turbid Lake Loosdrecht (The Netherlands) is importantly influenced by light availability, and thus the concentrations of the various light-attenuating materials. The system is highly eutrophic and supports an algal biomass of ca. 160 mg Chl m–3. A model is proposed here which predicts algal growth in the lake as a function of the light received and subsequent attenuation in the water column by phytoplankton, tripton and background colour. The model is based on an energy balance which relates growth rate to the true growth yield on light energy and the energy demand for cell maintenance. The coefficients for energy conversion (Y = 0.002 gDW kJ–1) and cell maintenance (µe = 0.031 day–1) were determined from steady state growth kinetics of Prochlorothrix hollandica in light-limited laboratory flow systems with the same depth as the lake and receiving summer average conditions of irradiance. Light attenuation by phytoplankton and tripton were quantified using specific attenuation coefficients: 0.011 m2 mg–1 Chl for the phytoplankton and 0.23 m2 g–1 DW for tripton.The growth studies demonstrated that Lake Loosdrecht can support a much higher algal biomass in the absence of non-algal particulate matter. The proposed model is used to predict chlorophyll a concentrations in dependence on growth rate and levels of tripton. Since approximately 75% of the sestonic dry weight in Lake Loosdrecht may be attributed to tripton, it is concluded that the algal biomass is markedly lowered by the abundance of tripton in the water column. A knowledge of the sources and fate of tripton in the lake is thus of fundamental importance in modelling phytoplankton dynamics.  相似文献   

8.
Classification of waters using biological quality elements and determination of the degree of deviation from reference levels is a key issue in the Water Framework Directive of EU. Lakes in reference conditions with sufficient biological data are available for several boreal lake types with the exception of naturally eutrophic lakes. An empirical approach is one alternative for estimating the reference conditions of such lakes. We used the water transparency of the naturally eutrophic Lake Tuusulanjärvi recorded in August in the early 1910s to estimate reference values for phytoplankton biomass and chlorophyll a concentrations. Three phytoplankton samples during August 2000–2001 corresponded to the estimated reference values for total biomass (<5.6 mg l?1) and chlorophyll a (<28 μg l?1), as did the simultaneous Secchi depths. The phytoplankton assemblage in these samples with 24 eutrophy indicators (17% of the total taxa number) corresponded in general the species list from the early 1900s, which as such could be regarded as reference assemblage. Furthermore, in August 2000, 3 years after intensive fish removal a prominent decrease in cyanobacterial biomass and toxin concentration was observed. The costs of the measures and studies in Lake Tuusulanjärvi during 1989–2003 have been approximately 2.5 million euros.  相似文献   

9.
Seasonal variations of phyto-, bacterio- and colourless flagellate plankton were followed across a year in the large shallow Lake Balaton (Hungary). Yearly average chlorophyll-a concentration was 11 µg 1–1, while the corresponding values of bacterioplankton and heterotrophic nanoflagellate (HNF) plankton biomass (fresh weight) were 0.24 mg 1–1 and 0.35 mg 1–1, respectively. About half of planktonic primary production was channelled through bacterioplankton on the yearly basis. However, there was no significant correlation between phytoplankton biomass and bacterial abundance. Bacterial specific growth rates were in the range of 0.009 and 0.09 h–1, and ended to follow the seasonal changes in water temperature. In some periods of the year, predator-prey relationships between the HNF and bacterial abundance were obvious. The estimated HNF grazing on bacteria varied between 3% and 227% of the daily bacterial production. On an annual basis, 87% of bacterial cell production was grazed by HNF plankton.  相似文献   

10.
External phosphorus loads to three shallow lakes in the Netherlands were reduced by eliminating waste-water discharge and by dephosphorization of the supply water, with which water level is controlled. Concentrations of total-phosphorus and chlorophyll a were significantly reduced during 1980–1986 in L. Breukeleveen, but not in L. Vuntus and L. Loosdrecht. In 1983–1986 the phosphorus flow through several trophic levels was determined. Changes over these years were not significant. External input to the lakes still contributes substantially to the phosphorus input. Release from the sediments also contributed to the cycling of the phosphorus. Excretion by large crustacean zooplankters was important in phosphorus recycling, and delivered 20–30% of the daily phytoplankton phosphorus demand. A similar contribution is expected from fish. If one wants recovery of the lakes to be accelerated, additional measures are needed.  相似文献   

11.
We studied vertical distribution patterns of three invertebrate predators – Leptodora kindtii, Mesocyclopssp., and Thermocyclops taihokuensis– in a shallow eutrophic lake, Lake Suwa , Japan. From June to October in 2000 and 2001, we collected samples in the lake center in order to examine the vertical distribution patterns and the densities of the predators in the water column during the day (0900) and at night (2330). We also examined phototactic behavior of Leptodora in the laboratory. The three invertebrate predators showed clear migration patterns. Leptodora and Thermocyclops displayed a typical migration, avoiding the surface and maintaining a high abundance in deeper water during the day, and being distributed uniformly during the night. Mesocyclops, on the other hand, showed no clear vertical distribution pattern in the water column. However, Mesocyclops showed higher densities in the water column during the night than during the day. It suggests that they stayed just above the bottom during the day and migrated upward during the night. Leptodora also showed such a density difference between day and night. In the laboratory, Leptodora showed strong negative phototactic behavior. The observed density changes between day and night in Leptodora and Mesocyclops suggests the possible underestimation of their population density by usual sampling methods, and thus the impact of predation on populations of prey zooplankton species may also be underestimated in shallow water bodies.  相似文献   

12.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

13.
Jeppesen  E.  Søndergaard  M.  Mortensen  E.  Kristensen  P.  Riemann  B.  Jensen  H. J.  Müller  J. P.  Sortkjær  O.  Jensen  J. P.  Christoffersen  K.  Bosselmann  S.  Dall  E. 《Hydrobiologia》1990,200(1):205-218
The use of fish manipulation as a tool for lake restoration in eutrophic lakes has been investigated since 1986 in three shallow, eutrophic Danish lakes. The lakes differ with respect to nutrient loading and nutrient levels (130–1000 μg P l−1, 1–6 mg N l−1). A 50% removal of planktivorous fish in the less eutrophic cyanobacteria-diatom dominated Lake V?ng caused marked changes in lower trophic levels, phosphorus concentration and transparency. Only minor changes occurred after a 78% removal of planktivorous fish in eutrophic cyanobacteria dominated Frederiksborg Castle Lake. In the hypertrophic, green algae dominated Lake S?byg?rd a low recruitment of all fish species and a 16% removal of fish biomass created substantial changes in trophic structure, but no decrease in phosphorus concentration. The different response pattern is interpreted as (1) a difference in density and persistence of bloomforming cyanobacteria caused by between-lake variations in nutrient levels and probably also mixing- and flushing rates, (2) a difference in specific loss rates through sedimentation of the algal community prevaling after the fish manipulation, (3) a decreased impact of planktivorous fish with increasing mean depth and (4) a lake specific difference in ability to create a self-increasing reduction in the phosphorus level in the lake water. This in turn seems related to the phosphorus loading.  相似文献   

14.
During the symposium Restoration and recovery of shallow lake ecosystems in The Netherlands studies on restoration of eutrophic lakes were addressed and discussed. Many Dutch shallow lakes have received high external loadings of phosphorus through supply water that is influenced by the River Rhine and loadings in The Netherlands. Two important Action Plans (the Rhine Action Plan, the North Sea Action Plan) are now in operation to reduce nutrient emissions. The targets set are not likely to be fully reached, so that supplementary reduction of phosphorus supplied to inland fresh waters will be required. In several shallow lakes such a reduction has been achieved recently, but without leading to discernible recovery. The main causes of delay are phosphorus storage and its subsequent release from sediments and foodweb; however, the remaining extraneous phosphorus supply is often still too high. Supplementary actions are, therefore, called for. A further reduction of phosphorus inputs is suggested, besides supplementary measures proposed, viz. dredging, flushing, biomanipulation, chemomanipulation. Restoration to the past situation via upwelling groundwater appeares to be feasible in some cases. There is a common consensus that each lake behaves differently depending to its morphology, hydrology and history of eutrophication. Therefore each lake has to be studied before restoration measures can be applied. Besides, the ecosystem should not only be studied as a separate entity, but as a part of systems of a higher integration level.  相似文献   

15.
The potential importance of the six major emergent and floating-leaved macrophyte species in recycling of sediment phosphorus in the Loosdrecht lakes was studied. Representative plant samples were collected at the time of maximum biomass, and analysed for biomass and carbon, nitrogen and phosphorus contents. Species cover was determined by aerial photography.Total cover in the seven lakes studied ranged between 2 and 26 percent. For the four main species, biomass per unit area increased with lake trophic status. Consistent differences in C, N and P contents per unit biomass were not observed. Although cover values were small, significant amounts of C, N and P were contained in the macrophytes when compared with maximum sestonic content.Potential P loads from macrophyte decay were calculated. In Lake Loosdrecht, the P load represented 15 percent of current external P inputs. The potential importance of macrophyte decay to P recycling in the other lakes is greater.Decay of macrophyte species at the end of the growing season appears to affect autumnal nutrient and chlorophyll a levels in the water column of some lakes. The re-establishment of submerged species following lake restoration may increase the importance of this pathway in the lakes.  相似文献   

16.
Microstratification of phytoplankton in the large shallow Lake Balaton (Hungary) was studied during a 24 h period. Dissolved O2 showed biological stratification; flagellates exhibited a definite circadian rhythm. In the middle of the investigation a heavy storm broke out which was followed by the disappearance of differences between different layers of water. Storm-induced destratification is described by cluster-analysis. Abundances of dominant species changed differently in connection with the storm. Numbers of Nitzschia sp. increased due to stirring up from the sediment surface. Numbers of single-celled or colony-forming species (Cyclotella comta, Crucigenia quadrata, Coelosphaerium kuetzingianum) practically did not change. Numbers of all the three dominant filamentous species (Aphanizomenon fos-aquae f. klebahnii, Lyngbya limnetica, Planctonema lauterbornii) significantly decreased, which might be attributed to an unknown loss process and was followed by a competitive displacement by algae of small cell size.  相似文献   

17.
Lake Pamvotis is a moderately sized (22 km2) shallow (z avg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4 +=0.25 mg N l-1, NO3 =0.56 mg N l-1). FRP and NH4 + levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures.  相似文献   

18.
The species composition and phytoplankton biomass of Lake Awassa, Ethiopia were studied from September 1985 to July 1986 in relation to some limnological features of the lake. During the study period, three phases of thermal stratification were recognized: a period of unstable stratification and near-complete mixing was followed by a stable stratification period and another period of complete mixing. Complete mixing was associated with cooling of air temperature with an influx of cool rain and high rainfall. The underwater light penetration showed a similar pattern over the whole period with the highest in the red, and the lowest in the blue spectral region. Euphotic depth varied between 1.6 and 3.0 meters with the highest measurements corresponding to the stable stratification period. PO4-P concentrations ranged between 23 and 45 µg l–1 and NO3-N concentrations varied between 7 and 14 µg l–1 during the study period. Both nutrients showed increasing values associated with mixing periods and/or the rainy season.A total of 100 phytoplankton species were identified with 48% of the taxa represented by green algae, 30% by blue-green algae, 11% by diatoms, and the rest by chrysophytes, dinoflagellates, cryptomonads and euglenoids. The dominant phytoplankton species were Lyngbya nyassae, Botryococcus braunii and Microcystis species. Seasonal biomass variation was pronounced in the first two species but not in Mycrocystis. Phytoplankton biomass increased following the mixing period in December, and thermal destratification during May to July which was also a period with high rainfall and relatively high nutrient concentration. While the seasonal variation of the total phytoplankton community in Lake Awassa was relatively low (coefficient of variation < 20%), it was higher in some of the individual component species.  相似文献   

19.
Talling  J. F.  Parker  J. E. 《Hydrobiologia》2002,487(1):167-181
Seasonal changes of phytoplankton were followed over 3 years (1985–87) in a shallow, unstratified and calcareous upland lake.The phytoplankton was of low to moderate abundance and generally dominated by phytoflagellates. Seasonality involved a winter minimum of abundance, a spring maximum of diatoms, and often brief increases in summer that included blue-greens, especially the colonial Gloeotrichia echinulata. Some components were of benthic origin. Seasonal growth of the main component of the phytobenthos, Chara globularisvar. virgata, caused a regular summer depletion in lake water of Ca2+ and HCO3 - (alkalinity) by associated CaCO3 deposition, and a more extreme (and unusual) depletion of K+. Chemical analysis of Chara biomass and of underlying sediments indicated a large benthic nutrient stock, much surpassing that represented by the phytoplankton. Growth in this biomass, and the magnitude of water-borne inputs, influenced the removals of Ca2+, K+ and inorganic N. The phytoplankton was probably limited by a low-P medium, to which co-precipitation of phosphate with CaCO3 may have contributed. A vernal depletion of Si was probably limiting to diatom growth, and appeared to be mainly induced by benthic rather than planktonic diatoms. Examples of long-term change in composition of the phytoplankton and phytobenthos are noted and discussed in relation to the interaction of these components, nutrient enrichment, and possible alternative stable states.  相似文献   

20.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号