首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Autophagy》2013,9(12):1472-1489
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

3.
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

4.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

5.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

6.
2-O-(2-Aminoethyl)-Ins(1,4,5)P(3), (5), a novel derivative of the Ca(2+)-mobilising second messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], was synthesised from myo-inositol. 5 was found to be a potent mobiliser of intracellular Ca(2+), and an Ins(1,4,5)P(3) affinity matrix synthesised from 5 was effective at selectively binding N-terminal fragments of the Ins(1,4,5)P(3) receptor containing the intact Ins(1,4,5)P(3) binding site. The microprotonation scheme for 5 was resolved and the related constants were determined in comparison with Ins(1,4,5)P(3) and another reactive Ins(1,4,5)P(3) analogue 1-O-(2-aminoethyl-1-phospho)-Ins(4,5)P(2), (2a), by potentiometric and NMR titration methods. The (31)P and (1)H NMR titration curves for compound 5 and Ins(1,4,5)P(3) are remarkably close, indicating analogous acid-base properties and intramolecular interactions for the two compounds. The 1-phosphate-modified Ins(1,4,5)P(3) derivative 2a, on the contrary, behaves as a bisphosphorylated rather than a trisphosphorylated inositol. Thus, 5 is a new reactive Ins(1,4,5)P(3) analogue of considerable potential for investigation of the chemical biology of Ins(1,4,5)P(3)-mediated cellular signalling.  相似文献   

7.
Calcium concentration is strictly regulated in all cells. The inositol 1,4,5-trisphosphate receptor (IP(3)R), which forms a homotetrameric Ca2+ release channel in the endoplasmic reticulum, is one of the key molecules responsible for this regulation. The opening of this channel requires binding of two intracellular messengers, which are inositol 1,4,5-trisphosphate (IP(3)) and Ca2+. To promote the Ca2+-channel gating and release from the endoplasmic reticulum, IP(3) binds to the amino-terminal region of IP(3)R. Recently, the crystal structure of IP(3)R-binding core in complex with its ligand was presented [I. Bosanac, J.R. Alattia, T.K. Mai, J. Chan, S. Talarico, F.K. Tong, K.I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai, T. Michikawa, K. Mikoshiba, M. Ikura, Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature 420 (2002) 696-700; I. Bosanac, H. Yamazaki, T. Matsu-ura, T. Michikawa, K. Mikoshiba, M. Ikura, Crystal structure of the ligand-binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor, Mol. Cell 17 (2005) 193-203]. The space positions of residues 289-301 (segment A), 320-350 (segment B), 373-386 (segment C), and 529-545 (segment D) were not determined by the X-ray crystallography. To bridge these gaps, the computer modeling of physiologically meaningful low-energy 3D structures of the segments A-D of the inositol 1,4,5-trisphosphate receptor has been carried out by using a hierarchical conformational search algorithm combining two approaches: knowledge-based homology modeling and ab initio conformational search strategy. The structure analysis suggests a Ca2+-binding site of high affinity formed by residues 296-335, several low-energy regular secondary structure units within the segment B, and a number of hinge regions within the segments A-D, important for the receptor functioning.  相似文献   

8.
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function.  相似文献   

9.
Huh YH  Yoo SH 《FEBS letters》2003,555(2):411-418
Although the inositol 1,4,5-triphosphate (IP(3))-induced nuclear Ca(2+) release has been shown to play key roles in nuclear functions, the presence of IP(3) receptor (IP(3)R)/Ca(2+) channels in the nucleoplasm has not been found. Recently, the IP(3)R/Ca(2+) channels were reported to exist in the nucleoplasmic reticulum structure, an extension of the nuclear envelope. Here we investigated the potential existence of the IP(3)Rs in the nucleoplasm and found the presence of all three IP(3)R isoforms in neuroendocrine and non-neuroendocrine cells. The IP(3)Rs were widely scattered in the nucleoplasm, localizing in both the heterochromatin and euchromatin regions.  相似文献   

10.
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation.  相似文献   

11.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) forms ligand-regulated intracellular Ca(2+) release channels in the endoplasmic reticulum of all mammalian cells. The InsP(3)R has been suggested to have six transmembrane regions (TMRs) near its carboxyl terminus. A TMR-deletion mutation strategy was applied to define the location of the InsP(3)R pore. Mutant InsP(3)Rs were expressed in COS-1 cells and single channel function was defined in planar lipid bilayers. Mutants having the fifth and sixth TMR (and the interceding lumenal loop), but missing all other TMRs, formed channels with permeation properties similar to wild-type channels (gCs = 284; gCa = 60 pS; P(Ca)/P(Cs) = 6.3). These mutant channels bound InsP(3), but ligand occupancy did not regulate the constitutively open pore (P(o) > 0.80). We propose that a region of 191 amino acids (including the fifth and sixth TMR, residues 2398-2589) near the COOH terminus of the protein forms the InsP(3)R pore. Further, we have produced a constitutively open InsP(3)R pore mutant that is ideal for future site-directed mutagenesis studies of the structure-function relationships that define Ca(2+) permeation through the InsP(3)R channel.  相似文献   

12.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

13.
So far, the content and accumulation of ATP in isolated endoplasmic reticulum (ER) are little understood. First, we confirmed using electron microscopic and Western blotting techniques that the samples extracted from MDCK cells are endoplasmic reticulum (ER). The amounts of ATP in the extracted ER were measured from the filtrate after a spinning down of ultrafiltration spin column packed with ER. When the ER sample (5 μg) after 3 days freezing was suspended in intracellular medium (ICM), 0.1% Triton X and ultrapure water (UPW), ATP amounts from the ER with UPW were the highest and over 10 times compared with that from the control with ICM, indicating that UPW is the most effective tool in destroying the ER membrane. After a 10-min-incubation with ICM containing phosphocreatine (PCr)/creatine kinase (CK) of the fresh ER. ATP amounts in the filtrate obtained by spinning down were not changed from that in the control (no PCr/CK). However, ATP amounts in the filtrate from the second spinning down of the ER (treated with PCr/CK) suspended in UPW became over 10-fold compared with the control. When 1 μM inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) was added in the incubation medium (ICM with PCr/CK), ATP amounts from the filtrate after the second spinning down were further enhanced around three times. This enhancement was almost canceled by Ca2+-removal from ICM and by adding thapsigargin, a Ca2+-ATPase inhibitor, but not by 2-APB and heparin, Ins(1,4,5)P3 receptor antagonists. Administration of 500 μM adenosine to the incubation medium (with PCr/CK) failed to enhance the accumulation of ATP in the ER. These findings suggest that the ER originally contains ATP and ATP accumulation in the ER is promoted by PCr/CK and Ins(1,4,5)P3.  相似文献   

14.
In atrial myocytes lacking t-tubules, action potential triggers junctional Ca2+ releases in the cell periphery, which propagates into the cell interior. The present article describes growing evidence on atrial local Ca2+ signaling and on the functions of inositol 1,4,5-trisphosphate receptors (IP3Rs) in atrial myocytes, and show our new findings on the role of IP3R subtype in the regulation of spontaneous focal Ca2+ releases in the compartmentalized areas of atrial myocytes. The Ca2+ sparks, representing focal Ca2+ releases from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) clusters, occur most frequently at the peripheral junctions in isolated resting atrial cells. The Ca2+ sparks that were darker and longer lasting than peripheral and non-junctional (central) sparks, were found at peri-nuclear sites in rat atrial myocytes. Peri-nuclear sparks occurred more frequently than central sparks. Atrial cells express larger amounts of IP3Rs compared with ventricular cells and possess significant levels of type 1 IP3R (IP3R1) and type 2 IP3R (IP3R2). Over the last decade the roles of atrial IP3R on the enhancement of Ca2+-induced Ca2+ release and arrhythmic Ca2+ releases under hormonal stimulations have been well documented. Using protein knock-down method and confocal Ca2+ imaging in conjunction with immunocytochemistry in the adult atrial cell line HL-1, we could demonstrate a role of IP3R1 in the maintenance of peri-nuclear and non-junctional Ca2+ sparks via stimulating a posttranslational organization of RyR clusters.  相似文献   

15.
Ca2+ signaling via the inositol 1,4,5-trisphosphate receptor (InsP3R) is a ubiquitous mechanism for regulation of cell function, yet very little is known about the role of the InsP3R in specific disease states. Converging lines of evidence suggest that the liver may provide a model for the role of the InsP3R in health and disease. Ca2+ signaling is mediated entirely by the InsP3R in hepatocytes and cholangiocytes, the two types of epithelia in the liver. Here we review the role of specific InsP3R isoforms and the physiological effects of InsP3R-mediated Ca2+ signals in both of these types of epithelia. In addition, we review evidence that the InsP3R is lost from cholangiocytes in cholestatic forms of liver disease, and discuss this as a possible final common pathway for cholestasis.  相似文献   

16.
17.
Single-channel properties of the Xenopus inositol trisphosphate receptor (IP3R) ion channel were examined by patch clamp electrophysiology of the outer nuclear membrane of isolated oocyte nuclei. With 140 mM K+ as the charge carrier (cytoplasmic [IP3] = 10 μM, free [Ca2+] = 200 nM), the IP3R exhibited four and possibly five conductance states. The conductance of the most-frequently observed state M was 113 pS around 0 mV and ∼300 pS at 60 mV. The channel was frequently observed with high open probability (mean P o = 0.4 at 20 mV). Dwell time distribution analysis revealed at least two kinetic states of M with time constants τ < 5 ms and ∼20 ms; and at least three closed states with τ ∼1 ms, ∼10 ms, and >1 s. Higher cytoplasmic potential increased the relative frequency and τ of the longest closed state. A novel “flicker” kinetic mode was observed, in which the channel alternated rapidly between two new conductance states: F1 and F2. The relative occupation probability of the flicker states exhibited voltage dependence described by a Boltzmann distribution corresponding to 1.33 electron charges moving across the entire electric field during F1 to F2 transitions. Channel run-down or inactivation (τ ∼ 30 s) was consistently observed in the continuous presence of IP3 and the absence of change in [Ca2+]. Some (∼10%) channel disappearances could be reversed by an increase in voltage before irreversible inactivation. A model for voltage-dependent channel gating is proposed in which one mechanism controls channel opening in both the normal and flicker modes, whereas a separate independent mechanism generates flicker activity and voltage- reversible inactivation. Mapping of functional channels indicates that the IP3R tends to aggregate into microscopic (<1 μm) as well as macroscopic (∼10 μm) clusters. Ca2+-independent inactivation of IP3R and channel clustering may contribute to complex [Ca2+] signals in cells.  相似文献   

18.
The effects of spontaneous and evoked [3H]taurine release from a P2 fraction prepared from rat retinas were studied. The P2 fraction was preloaded with [3H]taurine under conditions of high-affinity uptake and then examined for [3H]taurine efflux utilizing superfusion techniques. Exposure of the P2 fraction to high K+ (56 mM) evoked a Ca2+-independent release of [3H]taurine. Li+ (56 mM) and veratridine (100 M) had significantly less effect (8–15% and 15–30%, respectively) on releasing [3H]taurine compared to the K+-evoked release. 4-Aminopyridine (1 mM) had no effect on the release of [3H]taurine. The spontaneous release of [3H]taurine was also Ca2+-independent. When Na+ was omitted from the incubation medium K+-evoked [3H]taurine release was inhibited by approximately 40% at the first 5 minute depolarization period but was not affected at a second subsequent 5 minute depolarization period. The spontaneous release of [3H]taurine was inhibited by 60% in the absence of Na+. Substitution of Br for Cl had no effect on the release of either spontaneous or K+-evoked [3H]taurine release. However, substitution of the Cl with acetate, isethionate, or gluconate decreased K+-evoked [3H]taurine release. Addition of taurine to the superfusion medium (homoexchange) resulted in no significant increase in [3H]taurine efflux. The taurine-transport inhibitor guanidinoethanesulfonic acid increased the spontaneous release of [3H]taurine by approximately 40%. These results suggest that the taurine release of [3H]taurine is not simply a reversal of the carrier-mediated uptake system. It also appears that taurine is not released from vesicles within the synaptosomes but does not rule out the possibility that taurine is a neurotransmitter. The data involving chloride substitution with permeant and impermeant anions support the concept that the major portion of [3H]taurine release is due to an osmoregulatory action of taurine while depolarization accounts for only a small portion of [3H]taurine release.  相似文献   

19.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

20.
A model explaining quantal Ca2+ release as an intrinsic property of the inositol 1,4,5-trisphosphate (IP3) receptor has been put forward. The model is based on the hypothesis that the IP3 receptor can catalyze a transformation of the IP, molecule differing from its conventional metabolism. A simple kinetic mechanism is considered, in which IP3-induced Ca2+ channel opening is followed by the step of IP3 conversion and channel closure. Examination of the resulting mathematical model shows that it can reproduce well both partial release of stored Ca2+ and the same responsiveness to subsequent IP3 additions. On incorporation of an additional closed state of the channel, the model describes also a time-dependent channel inactivation at a high IP3 dose. Temperature sensitivity of the catalytic step accounts for the reported elimination of quantal responses and inactivation at low temperature. The transformation product is surmised to be a positional or stereo isomer of IP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号