首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
The technique of grazing cut sods was used in combination with sound and video recording to examine the feasibility of using small-scale depletion curves derived from stall trials to estimate forage intake of cattle at the pasture. Setaria lutescens sods were grazed for a variable number of bites to generate patch depletion curves. Depletion curves characterize forage intake as a function of the number of bites taken at a single feeding station. Thus, the method agrees with a hierarchical approach to foraging and it could be used as a basis for scaling up food intake measurements to larger spatial scales. Two sod experiments were carried out, with the second experiment as a validation for predictions of intake. A field experiment was carried out to validate the predictions from the sod experiments with respect to both the amount and the rate of intake. Bite weight was largely determined by initial sward height and depletion level. Cumulative dry matter intake from the sods was well described by a rectangular hyperbola including the variables of number of bites and sward height. Bulk density added little to the explained variation, but was an important factor to account for the dry matter intake on short, dense sods from the second experiment. Feeding time could be explained to a great extent by the number of bites and chews taken, both in the sod and in the field experiments. However, the animals were substantially faster when grazing in the field than on the sods due to a relatively smaller chewing effort. The estimate of bite weight in the field based on the sod depletion curves was validated by an independent estimate derived from the chew to bite ratio. Bite weight estimates that ignored feeding station depletion were significantly greater than the independent estimates. We conclude that the sod grazing technique is an adequate tool to investigate food intake and forage depletion by grazing. It shows promise as a tool to explicitly scale up of foraging behaviour from the level of the feeding station to that of larger patches.  相似文献   

2.
Can grazing sheep compensate for a daily foraging time constraint?   总被引:3,自引:0,他引:3  
1. Theoretical studies of large herbivore foraging assume that total daily grazing time is a key constraint on daily intake and diet choice. We experimentally tested this assumption and investigated the effects of food availability on the ability of grazing sheep to compensate for restriction of available daily grazing time.
2. Foraging behaviour, intake and diet digestibility by sheep, were measured on grass pastures in a replicated 2 × 2 factorial experiment, in which overnight access to pasture was varied (restricted overnight and continuous access) on two sward heights (5·5 and 3·0 cm), representing high and low food availability.
3. Regardless of food availability, the overnight-restricted sheep fed for almost all of the available grazing time by grazing for fewer, longer foraging bouts, but still had much shorter total daily grazing time than the continuous access sheep.
4. In response to overnight penning, the sheep had a significantly higher instantaneous rate of intake achieved mainly via larger bites. The continuous access sheep were hence not maximizing their short-term rate of intake, whilst grazing according to the daily schedule considered normal for sheep.
5. The behavioural responses to overnight food restriction were able to counteract the reduction in daily grazing time only where food availability was high. In contrast on short swards overnight grazing restriction led to a reduction in total daily intake. We suggest that the interactions between the factors considered as constraints on foraging behaviour of herbivores are, as yet, only poorly quantified.  相似文献   

3.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

4.
Foraging strategy of cattle in patchy grassland   总被引:2,自引:0,他引:2  
We tested several strategies of foraging that grazing herbivores may adopt in a patchy habitat in relation to energy intake. The patch selection of cattle was investigated in an Agrostis/Festuca grassland and in a Lolium grassland in 13 observation periods over 2 years. Both grasslands were stocked with five yearling steers. Bite counts were made on patches of different vegetation structure: short, tall and mature stemmy grass. Bite size of each patch category was determined by hand-plucking. Samples of patch types were analysed for organic matter digestibility, as a measure of energy content. There was a large seasonal variation in relative patch cover and in forage characteristics. However, the differences between patches in bite size, bite rate and digestibility were consistent over time. In short patches digestibility was high, bite size was low and bite rate was high compared to stemmy patches. In tall patches digestibility was only little lower than in short patches and bite size and bite rate were intermediate between short and stemmy patches. The steers selected the short and tall patches over the stemmy patches, despite a relatively low intake rate of digestible organic matter in the short patches. Four hypotheses on foraging strategy were examined to explain the allocation of time or bites between patches: random allocation according to bites, random allocation according to grazing time, matching of time in proportion to digestibility, and matching of time in proportion to intake rate of digestible organic matter. The observed distribution of bites and time between patches was significantly different from the predictions of the various hypotheses. Patch choice was better explained by a random allocation of grazing time than by a random allocation of bites. Matching for digestible organic matter intake rate yielded the worst predictions of patch selection. Matching for digestibility gave the best explanation of patch selection, but the improvement compared to a random allocation of grazing time was not significant. The significance of the contribution of digestibility to selection may have been confounded by the effect of increased selectivity within tall patches. Observed patch selection was considered in relation to the maximization of energy intake rate. The selectivity of cattle was not pronounced, but it was consistent with a principle of maximization of energy intake on a daily basis instead of a short-term basis. Selectivity appeared to be constrained by costs of searching for and discriminating between different forage resources. It is concluded that a flexible selection for short patches over tall patches and avoidance of stemmy patches provides a good approximation of energy intake maximization in a complex and changing environment.  相似文献   

5.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

6.
Sexual segregation in Soay sheep (Ovis aries) was investigated using an experimental approach in order to test the sexual dimorphism-body size hypothesis. Two corollaries of the sexual dimorphism-body size hypothesis were tested: (1) in dimorphic species males, the larger sex, have relatively smaller bite sizes on short swards because of the scaling of incisor arcade with body weight, and (2) they move off earlier to feed on taller but poorer-quality swards when such swards are patchily distributed on a scale which enables the spatial segregation of individuals. Patch choice between sexes was estimated using a matrix of grass patches which differed in both quality and biomass of grass on offer (HQ: high-quality-low-biomass; LQ: low-quality-high-biomass). Sex differences in patch choice and grazing behaviour were tested in short-term preference trials. Incisor breadth showed no significant difference between sexes. On the other hand, muzzle width was dimorphic, with females having a narrower muzzle than males. Bite size was significantly different between the sexes, being smaller in females than in males, although it was not significantly different between sward types. Females had a higher bite rate than males and the bite rate was higher in the HQ sward type than the LQ sward type. When the effect of body mass was removed, no sex differences in muzzle size, bite size or bite rate were found. The intake rate did not differ between the sexes or between sward types. Whilst both sexes preferred the HQ sward type, females spent a significantly longer time feeding on the LQ sward type than did males. The difference detected between the sexes in patch choice was not consistent directly with the sexual dimorphism-body size hypothesis. Alternative explanations based on sex differences in foraging behaviour in relation to body mass sexual dimorphism are discussed to explain the result. Received: 1 February 1999 / Accepted: 12 May 1999  相似文献   

7.
For grazing animals an important determinant of animal performance is the rate of nutrient intake (RNI) which depends on diet quality and instantaneous intake rate (IIR). In turn, diet quality and IIR are the outcome of the interaction between the morphology and behaviour of the animal and the structure of the sward. Using artificial microswards of Panicum maximum we evaluated the effect of four levels of the tensile resistance of stems in tropical swards on the grazing behaviour of cattle of two age classes (1- and 3-year-old steers) faced with a stem barrier either in a vertical (experiment 1, E1) or horizontal plane (experiment 2, E2). The animals did not select against low tensile resistance stems (LTRS) but did avoid high tensile resistance stems (HTRS) which resulted in a significant difference (P < 0.001) between diet DM (dry matter) digestibility and forage DM digestibility in swards with HTRS. IIR decreased (P < 0.001) on average 62% in E1 and 67% in E2 as stem tensile resistance increased, 144% and 177% in E1 and E2, respectively. This led to a reduction (P < 0.001) in digestible DM IIR in both young and mature cattle respectively of 56% and 68% in E1, and 45% and 79% in E2, as stem tensile resistance increased. The decline in IIR was due to an increase in time per bite and a reduction in bite dimensions that were the result of different mechanisms in the two experiments: when leaves were taller than the stems (E1) the decrease in bite area was associated with an asymptotic increase (P < 0.001) in bite force in mature animals, and a maintenance (P = 0.456) of bite force in young animals, suggesting that maximum bite force regulated bite area in E1. This was not the case in E2 because both bite area and bite force decreased (P < 0.05) with the increase in stem tensile resistance suggesting that the animals were not able to gather enough plant material with the tongue in order for bite force to regulate bite area. We conclude that bite force and tongue force regulate selectivity and bite dimensions, which are the ultimate determinants of the RNI; IIR is the primary determinant of the RNI with diet quality being of lesser importance; and HTRS act as deterrents to achieving maximum IIR in tropical swards, particularly in mature cattle.  相似文献   

8.
Determining herbage intake is pivotal for studies on grazing ecology. Direct observation of animals allows describing the interactions of animals with the pastoral environment along the complex grazing process. The objectives of the study were to evaluate the reliability of the continuous bite monitoring (CBM) method in determining herbage intake in grazing sheep compared to the standard double‐weighing technique method during 45‐min feeding bouts; evaluate the degree of agreement between the two techniques; and to test the effect of different potential sources of variation on the reliability of the CBM. The CBM method has been used to describe the intake behavior of grazing herbivores. In this study, we evaluated a new approach to this method, that is, whether it is a good proxy for determining the intake of grazing animals. Three experiments with grazing sheep were carried out in which we tested for different sources of variations, such as the number of observers, level of detail of bite coding grid, forage species, forage allowance, sward surface height heterogeneity, experiment site, and animal weight, to determine the short‐term intake rate (45 min). Observer (Pexp1  = 0.018, Pexp2  = 0.078, and Pexp3  = 0.006), sward surface height (Pexp2  < 0.001), total number of bites observed per grazing session (Pexp2  < 0.001 and Pexp3  < 0.001), and sward depletion (Pexp3  < 0.001) were found to affect the absolute error of intake estimation. The results showed a high correlation and agreement between the two methods in the three experiments, although intake was overestimation by CBM on experiments 2 and 3 (181.38 and 214.24 units, respectively). This outcome indicates the potential of CBM to determining forage intake with the benefit of a greater level of detail on foraging patterns and components of the diet. Furthermore, direct observation is not invasive nor disrupts natural animal behavior.  相似文献   

9.
The primary goal of foraging herbivores is to maximise the net rate of intake of digestible energy (or of a limiting nutrient). However, foraging strategies of herbivores are also sensitive to other selective forces (e.g. predation, parasites), which may modify their choice of feeding patches. Horses feed in spatially complex swards, and allocate their time among patches which vary both in terms of their nutritional benefits, and the risk of parasitism. It has long been suggested that horses allocate time among patches principally in relation to the risk of parasitism, though the nutritional costs and benefits of different foraging choices must play some role too. In this study, we investigated the roles of nutritional and anti-parasite factors in foraging decisions by horses. Six naturally parasitized and six unparasitized two-year-old geldings were allowed to graze from pairs of trays (112×72 cm) with swards at two heights (tall: 52 cm, medium: 15 cm) and two levels of contamination (280 g m−2 of faeces, no faeces) in a latin square, pair-wise design with six different choices. In nutritional terms the differences between the swards were slight: the tall sward provided larger bite sizes and higher intake rates (+36%). Feeding motivation was not high, and the faecal stimulus was strong. The horses selected uncontaminated swards when the nutritional benefits were identical, and tall swards in virtually all circumstances. Contamination of the preferred tall sward (i.e. a test of the tradeoff between anti-parasite and nutritional strategies) had little effect on its selection by the horses. Their parasite status also had little effect: both groups selected the tall sward in the tradeoff (though this was only a trend for the non-parasitised group in one analysis). We conclude that patch selection by horses in these particular conditions was driven principally by their nutritional strategy.  相似文献   

10.
Intake rate, the rate in which herbivores can process their food, is presumed to be an important factor in habitat selection down to the scale of the foraging patch. Much attention has been given to the selection of swards of high nutritional quality, but much less has been given to the influences of sward structure on patch selection in small herbivores. In this study we tested the effects of sward density and height on the functional foraging response of barnacle geese, Branta leucopsis. The functional response curve for herbivores describes how intake rate is affected by food availability. We conducted feeding trials to determine intake rate and bite size of barnacle geese on experimentally manipulated swards. Results indicate that intake rate is mainly dependent on sward height and that there is a strong correlation between bite size and intake rate. Sward density does not influence the rate of food consumption; it is, however, a crucial parameter affecting potential total yield. We conclude that bite size is the crucial parameter influencing intake rate. Bite size is explained both by sward height and individual differences in bill morphology. Furthermore, intake rate seems to be dependent on the physical structure of the grass species consumed.  相似文献   

11.
An understanding of the processes involved in grazing behaviour is a prerequisite for the design of efficient grassland management systems. The purpose of managing the grazing process is to identify sward structures that can maximize animal forage daily intake and optimize grazing time. Our aim was to evaluate the effect of different grazing management strategies on foraging behaviour and herbage intake by sheep grazing Italian ryegrass under rotational stocking. The experiment was carried out in 2015 in southern Brazil. The experimental design was a randomized complete block with two grazing management strategies and four replicates. The grazing management treatments were a traditional rotational stocking (RT), with pre- and post-grazing sward heights of 25 and 5 cm, respectively, and a ‘Rotatinuous’ stocking (RN) with pre- and post-grazing sward heights of 18 and 11 cm, respectively. Male sheep with an average live weight of 32 ± 2.3 kg were used. As intended, the pre- and post-grazing sward heights were according to the treatments. The pre-grazing leaf/stem ratio of the Italian ryegrass pasture did not differ between treatments (P > 0.05) (~2.87), but the post-grazing leaf/stem ratio was greater (P < 0.001) in the RN than in the RT treatment (1.59 and 0.76, respectively). The percentage of the non-grazed area was greater (P < 0.01) in post-grazing for RN compared with RT treatment, with an average of 29.7% and 3.49%, respectively. Herbage nutritive value was greater for the RN than for the RT treatment, with greater CP and lower ADF and NDF contents. The total time spent grazing, ruminating and resting did not differ between treatments (P > 0.05), with averages of 439, 167 and 85 min, respectively. The bite rate, feeding stations per min and steps per min by sheep were greater (P < 0.05) in the RN than in the RT treatment. The grazing time per hour and the bite rate were greater (P < 0.05) in the afternoon than in the morning in both treatments. The daily herbage intake by sheep grazing Italian ryegrass was greater (P < 0.05) in the RN than in the RT treatment (843.7 and 707.8 g organic matter/sheep, respectively). Our study supports the idea that even though the grazing time was not affected by the grazing management strategies when the animal behaviour responses drive management targets, such as in ‘Rotatinuous’ stocking, the sheep herbage intake is maximized, and the grazing time is optimized.  相似文献   

12.
Abstract.  1. Plants respond to herbivore damage by inducing defences that can affect the abundance of herbivores and predators. These tritrophic interactions may be influenced by heterogeneity in plant neighbourhood.
2. In the present study, the effects of induced responses on the abundance of herbivores (flea beetles and aphids), omnivores (pirate bugs and thrips), and predators (lady beetles and spiders) on individual plants and their neighbours between and within patches composed of three tomato plants was investigated.
3. Herbivore damage was manipulated to create homogeneous patches where either all or none of the plants had defences induced by herbivore damage, and heterogeneous patches where only one of the plants was induced.
4. Arthropod abundance on plants at different scales was compared by testing between patch effects (patch level), for neighbourhood effects at the plant phenotype level (neighbourhood level), and between near and far plants (within patch position).
5. At the patch level , plants in homogeneously induced patches contained fewer flea beetles and pirate bugs, but more lady beetles, compared with homogeneously non-induced patches. There was no effect of patch type on the abundance of aphids, thrips, and spiders on plants.
6. At the neighbourhood level , induced plants in heterogeneous patches contained more flea beetles and pirate bugs compared with induced plants in homogeneous patches, indicating that the abundance of some herbivores and omnivores on induced plants varied depending on the phenotype of the other plants within the patch. Within patch position, there was no evidence that the abundance of herbivores or predators on non-induced plants was affected by proximity to an induced plant.
7. Therefore, variation in plant neighbourhood generated by induced plant responses affected the abundance of three arthropods from three feeding guilds.  相似文献   

13.
We tested the hypothesis that the infra-gastrointestinal parasite population of herbivores affects their grazing behaviour in relation to the supra-parasite population of parasites in the environment. Our first objective was to create a naturally heterogeneous sward structure of gaps and tussocks using a continuous grazing scheme. We then demonstrate that a nutrition vs. parasitism grazing trade-off occurs within that sward structure and that infra-gastrointestinal parasite populations affect the grazing decisions of herbivores faced with the trade-off. A pool of 50 naturally parasitised female Soay sheep and their lambs were used to create a heterogeneous tall, faeces-contaminated tussock/short, non-contaminated gap sward structure in a 1-ha experimental plot. Tussocks offered approximately 1.5 times greater forage intake but contained 5.5 times the number of strongyle parasites compared to the gaps. Following a 10-week period in which the heterogeneous sward structure was created, two 5-day periods of observations of sward structure selection (i.e. gap vs. tussock) were carried out. Twenty female Soay lambs were divided into two groups of ten (balanced for live-weight) immediately prior to the start of the observation period. One of the groups of lambs was treated with an anthelmintic drench before the start of the second observation period creating two levels of parasitism (high and low). On each observation day 5-min focal observations were carried out on each animal at least twice a day, during which time the number of bites taken from gaps and tussocks were recorded along with the number of steps. During the first period of observations, all animals rejected the relatively tall, faeces-contaminated tussocks for grazing to a similar extent and had similar bite and step rates. During the second period of observations all animals showed reduced rejection of the tussocks relative to the first week, however, animals with a reduced parasite population showed a greater reduction in rejection as compare to the highly parasitised animals. We conclude that the infra- and supra-distributions of parasites within herbivore hosts and the environment greatly impact on herbivore grazing behaviour and foraging decisions and thus the structure and heterogeneity of grazed ecosystems.  相似文献   

14.
Although stocking rate is a key management variable influencing the structure and composition of pastures, only few studies have simultaneously analysed the seasonal patterns of pasture use by cattle, and the adjustments the animals make to maintain intake of a high-quality diet over the grazing season. Therefore, over a 3-year study, we recorded diet selection, plot use and impact of heifers on sward structure and quality under three different stocking rates (0.6, 1.0 and 1.4 livestock units (LU) per ha) in a species-rich mountain pasture of central France. Measurements were made on three occasions between early June and the end of September each year. Overall, heifers selected for bites dominated by legumes or forbs, and against reproductive grass, whatever the stocking rate or season. Selection for tall mixed (P < 0.05), short mixed (P < 0.05) and short pure grass bites (P < 0.01) was more pronounced in plots grazed at the lowest stocking rate. Although heifers' selection for short patches decreased at the end of the season (P < 0.001), they continued to graze previously grazed areas, thus exhibiting a typical 'patch grazing' pattern, with the animals that grazed at the lowest stocking rate tending to better maintain their selection for short patches in September (treatment × period: P = 0.078). Neither diet quality nor individual animal performance were affected by the different stocking rate treatments despite high variability in the quantity and quality of herbage offered and differences in diet selection. However, at the 1.4 LU per ha stocking rate, the quantity of forage available per animal at the end of the season, 0.79 t dry matter (DM) per ha of green leaves with the median of sward height at 4.6 cm, approached levels limiting cattle's ability to compensate for the effects of increasing stocking rate. In plots grazed at 0.6 LU per ha, the total herbage biomass remained higher than 3 t DM per ha with more than 30% of plot area still covered by reproductive grass patches at the end of the grazing season, which in the medium term should affect the botanical composition of these pastures. Sward heterogeneity was high in plots grazed at 1.0 LU per ha, with sufficient herbage availability (1.1 t DM per ha of green leaves) to maintain animal performance, and more than 15% of plot area was kept at a reproductive stage at the end of the grazing season. Hence, it could represent the optimal balance to satisfy both livestock production and conservation management objectives.  相似文献   

15.
An experiment was carried out using a trade-off framework to determine the rules of sward selection, in relation to gastrointestinal parasite dispersion, used by mammalian herbivores, and the effect of level of feeding motivation and parasitic status on these rules. Twenty-four sheep divided into four animal treatment groups resulting from two levels of feeding motivation (high and moderate) and two parasitic states (parasitised with Ostertagia circumcincta and non-parasitised) were presented with pairs of experimental swards which varied in N content (high and low), sward height (tall and short) and level of contamination with faeces and thus parasites (contaminated and non-contaminated). The selection for tall swards outweighed both the selection for N-rich swards and the avoidance of faecal contaminated swards. The selection for N-rich swards could not completely overcome faecal avoidance. Parasitism in animals with a moderate feeding motivation reduced their bite rates and grazing depths, thereby probably reducing the rate of ingestion of parasitic larvae. In contrast, highly feeding-motivated animals (including those parasitised) increased their bite rates and grazing depths, thereby increasing the rate of ingestion of parasites. The inclusion of parasite distributions, both in the environment and within herbivore host populations, is likely to advance optimal foraging theory by enhancing its predictive power. Received: 30 November 1999 / Accepted: 14 February 2000  相似文献   

16.
Summary When grassland is grazed by livestock, the structure of the sward changes in a patchy manner. With continuous selective grazing there is a mosaic of short and tall patches but as grazing intensifies the area of short‐grazed patch increases until the paddock has a lawn‐like appearance. This mosaic of patch structures can be stable, as short patches tend to attract repeated grazing and tall patches tend to be avoided. Because heavy grazing can detrimentally affect soil and water functions in grassland (ultimately resulting in erosion), we aimed to assess how well the physical structure of the sward reflects soil surface condition. We described four grassland patch structures that were assumed to reflect different levels of present grazing, and to some extent, past grazing pressure. We assessed patch structure and two other grass‐related variables (basal area of a ‘large tussock’ functional group and basal area of all perennial grass) as possible indicators of soil surface condition. Three indices of condition were measured in the field. The infiltration and nutrient cycling index declined progressively across patch structures, consistent with increasing grazing pressure. The stability index was found to be reduced only for the most heavily grazed grass structure (short patches). We found the ‘large tussock’ grass functional group to be a more sensitive indicator of soil surface condition than the group consisting of all perennial grasses. We found no evidence of sudden soil surface condition decline beyond a certain level of grass basal area, that is, there was no evidence of thresholds, rather, incremental loss of condition accompanied grass decline. We are thus not able to further refine an earlier proposed management recommendation ‘Graze conservatively to maintain dominance of large and medium tussock grasses over 60–70% of the native pastures’, except to suggest the use of short patches as a more practical indicator, rephrasing the recommendation as ‘Graze conservatively to allow a maximum of 30% short‐grazed patches in native pastures’.  相似文献   

17.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

18.
The spatial heterogeneity of grasslands determines the abundance and quality of food resources for grazing animals. As plants mature, they increase in mass, which allows greater instantaneous intake rates, but the cell wall concentrations increase too, reducing diet quality. In ruminants, daily intake rates are often constrained by the time needed for the ingesta to pass through the rumen, which is influenced by the rate of digestion. It has been suggested that the digestive constraint should have much less effect on hindgut fermenters such as equids. Horses play an increasing role in the management of grasslands in Europe, but the data on the influence of the heterogeneity of the vegetation on their daily intake and foraging behaviour are sparse. We report here the results of a preliminary study concerning the effects of sward structure on nutrient assimilation and the use of patches of different heights by horses grazing successively a short immature, a tall mature and a heterogeneous pastures (with short and tall swards). Daily nutrient assimilation was higher in the heterogeneous pasture compared to the short (+35%) and the tall (+55%) ones. The digestive constraints may have limited voluntary intake by horses on the tall swards. In the heterogeneous pasture, the mean height used for feeding (6 to 7 cm) by horses was intermediate between the heights used in the short (4 to 5 cm) and tall pastures (22 to 23 cm), and the animals may thus have benefited from both short swards of high quality and tall swards offering a higher instantaneous intake rate.  相似文献   

19.
In Serengeti fire is used as a management tool to improve the forage quality for large herbivores. However, little is known of the effects of fire on grazing resources particularly sward structure, its influence on herbivore forage patch selection and utilization to the relative amount of phytomass consumed in burnt and nonburnt patches. From September 2003 to July 2004, consumption of phytomass by large herbivores was assessed with eight samplings in six grassland sites in the Western Corridor in Serengeti National Park. Each site had burnt and nonburnt plots. Movable cages were used to exclude grazing between samplings and plant material harvests were used to assess phytomass and sward structure changes in time. Nonburnt grasslands had consistently larger phytomass at all sampling events whereas the ratio for live leaf/total phytomass was higher in burnt grassland at early postfire stages, but declined later in the season. Moreover, periodic consumption of both total phytomass and different phytomass components shifted between burnt and nonburnt grasslands, but there were also large site-specific responses. The shift appears to be related to the balance between the amount of phytomass available and the quality of the forage in terms of the ratio between live and total phytomass. The study highlights the significance of maintaining mosaics of burnt and nonburnt areas with an adequate provision of forage amount and quality all year round.  相似文献   

20.
Abstract. 1. Attributes of patches with strawberry plants were manipulated experimentally to assess the impact of patch size and host density on the abundance of tarnished plant bug (Hemiptera: Miridae) and incidence of fruit damage.
2. The density of nymphs per inflorescence increased with patch size and host density for some but not all generations of plant bug, providing partial support for the resource concentration hypothesis, while emphasising the importance of replicating experiments across several generations of herbivore.
3. Increasing density of nymphs with increasing patch size and host density did not translate into a high incidence of damage, which may be due to the relatively low feeding impact of nymphs in patches with numerous fruits and to the relatively high perimeter-to-area ratio in small patches resulting in a relatively high proportion of damaged fruits.
4. The decreasing proportion of damaged fruits with increasing density of fruits per patch suggests that nymphs exhibit a saturating functional response to density of strawberry fruits. Functional responses of herbivores may be a critical yet overlooked component that influences interactions between insects and their host plant. In particular, concentrated plant resources may result in increased numbers of herbivores yet sill have a negligible influence on plant damage and/or fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号