首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

2.
Chromosomal high mobility group (HMG) proteins have been examined as substrates for cGMP-dependent and cAMP-dependent protein kinases. Of the four HMG proteins only HMG 14 contained a major high affinity site which could be phosphorylated by both enzymes, preferentially by cGMP-dependent protein kinase. One mol of 32P was incorporated/mol of HMG 14. Kinetic analysis revealed apparent Km and Vmax of 40.5 microM and 14.7 mumol/min/mg, respectively, for cGMP-dependent protein kinase, and 123 microM and 11.1 mumol/min/mg, respectively, for cAMP-dependent protein kinase. Tryptic maps of 32P-labeled phosphopeptides of HMG 14 demonstrated phosphorylation of the same site by both enzymes. The tryptic fragment containing the major phosphorylation site was identified by amino acid composition and sequence as HMG 14 (residues 4-13): H-Lys-Val-Ser(P)-Ser-Ala-Glu-Gly-Ala-Ala-Lys-OH. HMG 14 and HMG 17 also contained minor sites which could be phosphorylated by cGMP-dependent protein kinase. Tryptic phosphopeptides mapping suggested that the same minor site was phosphorylated on both HMG 14 and 17. On the basis of amino acid composition, the tryptic peptides carrying the minor phosphorylation sites were identified as H-Leu-Ser(P)-Ala-Lys representing residues 23-26 and 27-30 of HMG 14 and HMG 17, respectively.  相似文献   

3.
Chromosomal high-mobility-group (HMG) proteins have been examined as substrates for calcium/phospholipid-dependent protein kinase C. Protein kinase C from rat brain phosphorylated efficiently both HMG 14 and HMG 17 derived from calf thymus and the reactions were calcium/phospholipid-dependent. About 1 mol of 32P was incorporated per mol of HMG 14 and HMG 17. Phosphopeptide mapping suggested that the same major site was phosphorylated in both proteins at serine. The apparent Km values for HMG 14 and HMG 17 were about 5 μM. HMG 14, HMG 17 and the five histone H1 subtypes prepared from rat thymus, liver and spleen were phosphorylated by the kinase. HMG 14 and HMG 17 from transformed human lymphoblasts (Wi-L2) were also phosphorylated in a calcium/phospholipid-dependent manner. HMG 1 and HMG 2 from the tissues examined were found to be poor substrates for the kinase.  相似文献   

4.
Phosphorylation of acidic substrates such as casein and phosvitin by nuclear protein kinase II is stimulated by polyamines and inhibited by heparin, which mimics an endogenous proteoglycan inhibitor. The phosphorylation in vitro of the chromatin proteins HMG 14 and HMG 17 by nuclear protein kinase II were examined in this study focusing on the modifying effects of polyamines and heparin. Both HMG proteins were phosphorylated by the enzyme, but polyamines did not appreciably influence the extent of their phosphorylation. In addition, heparin did not inhibit the kinase reaction with the HMG proteins as substrates. These results indicate that the nuclear protein kinase II does actively phosphorylate HMG 14 and HMG 17 in vitro but that in contrast to some model substrates, polyamines and heparin do not appreciably affect their phosphorylation.  相似文献   

5.
All dividing cells entering the M phase of the cell cycle undergo the transient activation of an M-phase-specific histone H1 kinase which was recently shown to be constituted of at least two subunits, p34cdc2 and cyclincdc13. The DNA-binding high-mobility-group (HMG) proteins 1, 2, 14, 17, I, Y and an HMG-like protein, P1, were investigated as potential substrates of H1 kinase. Among these HMG proteins, P1 and HMG I and Y are excellent substrates of the M-phase-specific kinase obtained from both meiotic starfish oocytes and mitotic sea urchin eggs. Anticyclin immunoprecipitates, extracts purified on specific p34cdc2-binding p13suc1-Sepharose and affinity-purified H1 kinase display strong HMG I, Y and P1 phosphorylating activities, demonstrating that the p34cdc2/cyclincdc13 complex is the active kinase phosphorylating these HMG proteins. HMG I and P1 phosphorylation is competitively inhibited by a peptide mimicking the consensus phosphorylation sequence of H1 kinase. HMG I, Y and P1 all possess the consensus sequence for phosphorylation by the p34cdc2/cyclincdc13 kinase (Ser/Thr-Pro-Xaa-Lys/Arg). HMG I is phosphorylated in vivo at M phase on the same sites phosphorylated in vitro by H1 kinase. P1 is phosphorylated by H1 kinase on sites different from the sites of phosphorylation by casein kinase II. The three thermolytic phosphopeptides of P1 phosphorylated in vitro by purified H1 kinase are all present in thermolytic peptide maps of P1 phosphorylated in vivo in proliferating HeLa cells. These phosphopeptides are absent in nonproliferating cells. These results demonstrate that the DNA-binding proteins HMG I, Y and P1 are natural substrates for the M-phase-specific protein kinase. The phosphorylation of these proteins by p34cdc2/cyclincdc13 may represent a crucial event in the intense chromatin condensation occurring as cells transit from the G2 to the M phase of the cell cycle.  相似文献   

6.
Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme.  相似文献   

7.
The phosphorylation of the whole troponin complex and of the cardiac and skeletal troponin components by Ca2+-phospholipid-dependent protein kinase was studied. The activity of enzyme isolated from rat brain by ion-exchange chromatography on DEAE-Sephadex and by affinity chromatography on phosphatidylserine immobilized on polyacrylamide gel was shown to be completely dependent on Ca2+ and phospholipids and was equal to 0.4-0.6 mumol of phosphate/min.mg protein with histone H1 as substrate. The resulting preparation of Ca2+-phospholipid-dependent protein kinase was able to phosphorylate the isolated troponin I; the amount of phosphate transferred per mol of cardiac and skeletal troponin I was equal to 1.1 and 0.4, respectively. The maximal degree of phosphorylation of isolated troponin T by Ca2+-phospholipid-dependent protein kinase was 0.6 mol of phosphate per mol of troponin T both for skeletal and cardiac proteins. The rate and degree of phosphorylation were independent of the initial level of troponin T phosphorylation. Ca2+-phospholipid-dependent protein kinase did not phosphorylate the first serine residue of troponin T, i.e., the site which was phosphorylated in the highest degree after isolation of troponin T from skeletal muscles. The data obtained and the fact that the rate and degree of phosphorylation of troponins I and T within the whole troponin complex are 10-20 times less than those for isolated components provide little evidence for the participation of protein kinase C in troponin phosphorylation in vivo.  相似文献   

8.
Both the triple-helical and denatured forms of nonfibrillar bovine dermal type I collagen were tested as substrates for the catalytic subunit of cAMP-dependent protein kinase in an in vitro reaction. Native, triple-helical collagen was not phosphorylated, but collagen that had been thermally denatured into individual alpha chains was a substrate for the protein kinase. Catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured collagen to between 3 to 4 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Pepsin-solubilized and intact collagens were phosphorylated similarly, as long as each was in a nonhelical conformation. The first 2 mol of phosphate incorporated into type I collagen by the protein kinase were present in the alpha 2(I) chain. The alpha 1(I) chain was only phosphorylated during long incubations in which the stoichiometry exceeded 2 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Phosphoserine was the only phosphoamino acid identified in collagen that had been phosphorylated to any degree by the protein kinase. The 2 mol of phosphate incorporated into the alpha 2(I) chain were localized to the alpha 2(I)CB4 cyanogen bromide fragment. The catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured pepsin-solubilized collagen with a Km of 8 microM and a Vmax of approximately 0.1 mumol/min/mg of enzyme. Denatured, but not triple-helical, type I collagen was also phosphorylated by cGMP-dependent protein kinase, although it was a poorer substrate for this enzyme than for the cAMP-dependent protein kinase. Collagen was not a substrate for phospholipid-sensitive Ca2+-dependent protein kinase. These results suggest the potential for nascent alpha chains of type I collagen to be susceptible to phosphorylation by cAMP-dependent protein kinase in vivo prior to triple-helix formation. Such a phosphorylation of collagen could be relevant to the action of cAMP to increase the intracellular degradation of newly synthesized collagen.  相似文献   

9.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

10.
C Y Wang  S K Kong  J H Wang 《Biochemistry》1988,27(4):1254-1260
Fodrin, an actin and calmodulin binding and spectrin-like protein present in many nonerythrocyte tissues, could be phosphorylated up to more than 1.5 mol of phosphate/mol of protein by a highly purified non-receptor-associated protein tyrosine kinase from bovine spleen. The protein phosphorylation was not affected by Ca2+/calmodulin or by F-actin. Km and Vmax values of the reaction were 91 nM and 0.35 nmol of P2 min-1 (mg of kinase)-1, respectively. Both subunits A and B of fodrin were phosphorylated, with the rate of subunit A phosphorylation much greater than that of subunit B phosphorylation. Tryptic phosphopeptide mapping of the phosphorylated subunits suggested that there were three major phosphorylation sites in subunit A and one in subunit B. Phosphotyrosylfodrin could be dephosphorylated by the calmodulin-stimulated phosphatase (calcineurin) in the presence of activating metal ions; Ni2+ was a much more effective activator than Mn2+ for this reaction. Fodrin phosphorylation by the spleen protein tyrosine kinase did not appear to alter the actin and calmodulin binding properties of the protein. On the other hand, the calmodulin-dependent stimulation of smooth muscle actomyosin Mg2+-ATPase by fodrin was enhanced by 101% +/- 3% (n = 3) upon fodrin phosphorylation. Ni2+-calcineurin, which was shown to effectively dephosphorylate the phosphotyrosyl residues on fodrin, could reverse the phosphorylation-enhanced Mg2+-ATPase stimulatory activity of fodrin.  相似文献   

11.
In plants, a variety of chromatin-associated high mobility group (HMG) proteins belonging to the HMGB family have been identified. We have examined the phosphorylation of the HMGB proteins from the monocotyledonous plant maize and the dicotyledonous plant Arabidopsis by protein kinase CK2alpha. Maize CK2alpha phosphorylates the maize HMGB1 and HMGB2/3 proteins and the Arabidopsis HMGB1, HMGB2/3, and HMGB4 proteins. Maize HMGB4 and HMGB5 and Arabidopsis HMGB5 are not phosphorylated by CK2alpha. Depending on the HMGB protein up to five amino acid residues are phosphorylated in the course of the phosphorylation reaction. The HMGB1 proteins from both plants are markedly more slowly phosphorylated by CK2alpha than the other HMGB substrate proteins, indicating that certain HMGB proteins are clearly preferred substrates for CK2alpha. The rate of the phosphorylation reaction appears to be related to the ease of interaction between CK2alpha and the HMGB proteins, as indicated by chemical cross-linking experiments. MALDI/TOF mass spectrometry analyses demonstrate that the HMGB1 and HMGB2/3 proteins occur in various phosphorylation states in immature maize kernels. Thus, HMGB1 exists as monophosphorylated, double-phosphorylated, triple-phosphorylated, and tetraphosphorylated protein in kernel tissue, and the tetraphosphorylated form is the most abundant version. The observed in vivo phosphorylation states indicate that protein kinase(s) other than CK2alpha contribute(s) to the modification of the plant HMGB proteins. The fact that the HMGB proteins are phosphorylated to various extents reveals that the existence of differentially modified forms increases the number of distinct HMGB protein variants in plant chromatin that may be adapted to certain functions.  相似文献   

12.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.  相似文献   

13.
The present work describes a perchloric-acid-soluble high-mobility-group (HMG)-like protein present in HeLa and Ehrlich ascites cells, rat and calf liver. The protein is designated P1 and has, depending on the source, a molecular mass 48-53 kDa and an amino acid composition which, like the HMG proteins, is characterized by a high content of acidic and basic residues and of proline. The protein contains about 10 mol serine/100 mol amino acid residues, is highly phosphorylated and has, in contrast to the known HMG proteins, an acidic isoelectric point of 5.0. An estimate suggests that protein P1 in HeLa interphase cells contains 25-30 residues of phosphate. Like HMG 1 and 2 it is distributed between the nucleus and the cytoplasm. In HeLa metaphase cells P1 is further modified, resulting in an increase in apparent molecular mass from 53 kDa to 56 kDa.  相似文献   

14.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

15.
Ribosomes prepared from murine lymphosarcoma cells were phosphorylated by a cyclic AMP-independent protein kinase designated H4P kinase. H4P kinase was isolated as an inactive enzyme which was activated by Mg2+-ATP and an endogenous converting enzyme. In the absence of preactivation by Mg2+-ATP and an endogenous converting enzyme, H4P kinase catalyzed phosphorylation of 80, 60, and 40 S ribosomal subunits at a low rate. After activation, the H4P kinase selectively catalyzed phosphorylation of the S 6 protein in the 40 S ribosomal subunit. Under the assay conditions selected, at least 90% of the [32P]phosphate transferred to the 40 S ribosomal preparation was incorporated into S 6. The apparent Km for 40 S subunits phosphorylated by H4P kinase was 7.2 microM. The calculated Vmax was 50 nmol of Pi transferred per min/mg. Exhaustive phosphorylation of 40 S subunits resulted in incorporation of 3 mol of phosphate/mol of S 6, in contrast to results reported previously which indicated 0.3 mol of phosphate was transferred by a similar enzyme from reticulocyte (Del Grande, R. W., and Traugh, J. A. (1982) Eur. J. Biochem. 123, 421-428). These data are consistent with a potential role for H4P kinase in the insulin-mediated phosphorylation of S 6 at multiple sites.  相似文献   

16.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

17.
The catalytic subunit of type-1 protein phosphatase (PP1) was phosphorylated by the tyrosine kinase v-abl as follows: (i) cytosolic PP1 was phosphorylated more (0.73 mol/mol) than PP1 obtained from the glycogen particles (0.076 mol/mol), while free catalytic subunit isolated in the active or inactive form from cytosolic PP1 was phosphorylated even less and catalytic subunit complexed with inhibitor-2 was not phosphorylated; (ii) phosphorylation stoichiometry was dependent on the concentration of PP1 and 3 h incubation at 30 degrees C was required for maximal phosphorylation; (iii) phosphorylation was on a tyrosine residue located in the C-terminal region of PP1 which is lost during proteolysis; (iv) phosphorylation did not affect enzyme activity but allowed conversion from the active to the inactive form upon incubation with inhibitor-2 of a PP1 form that in its dephospho-form did not convert.  相似文献   

18.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII.  相似文献   

19.
We have used affinity chromatography to study the effects of phosphorylation of calf thymus high-mobility-group proteins HMG 14 and HMG 17 on their binding properties towards calf thymus single- and double-stranded DNA and histone H1. Without in vitro phosphorylation, HMG 14 and HMG17 eluted from doble-stranded DNA-columns at 200 mM NaCl. HMG 14 was released from single-stranded DNA-column at 300 mM NaCl and from H1-column at 130 mM NaCl, whereas the corresponding values for HMG 17 were 230 mM and 20 mM, respectively. Phosphorylation of HMG 14 and HMG 17 by cAMP-dependent protein kinase (A-kinase) decreased markedly their affinity (270 mM and 200 mM NaCl, respectively) for single-stranded DNA, whereas HMG 14 phosphorylated by nuclear protein kinase II (NII-kinase) eluted only slightly (290 mM NaCl) ahead of the unphosphorylated protein. HMG 14 phosphorylated by both A-kinase and NII-kinase eluted from double-stranded DNA-columns almost identically (190 mM NaCl) with the unphosphorylated protein. Interestingly, phosphorylation of HMG 14 by NII-kinase increased considerably its affinity for histone H1 and the phosphorylated protein eluted at 200 mM NaCl. Phosphorylation of HMG 14 by A-kinase did not alter its interaction towards histone H1. These results indicate that modification of HMG 14 by phosphorylation at specific sites may have profound effects on its binding properties towards DNA and histone H1, and that HMG 17 has much weaker affinity for single-stranded DNA and histone H1 than HMG 14.  相似文献   

20.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号