首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
MOTIVATION: In proteomics, reverse database searching is used to control the false match frequency for tandem mass spectrum/peptide sequence matches, but reversal creates sequences devoid of patterns that usually challenge database-search software. RESULTS: We designed an unsupervised pattern recognition algorithm for detecting patterns with various lengths from large sequence datasets. The patterns found in a protein sequence database were used to create decoy databases using a Monte Carlo sampling algorithm. Searching these decoy databases led to the prediction of false positive rates for spectrum/peptide sequence matches. We show examples where this method, independent of instrumentation, database-search software and samples, provides better estimation of false positive identification rates than a prevailing reverse database searching method. The pattern detection algorithm can also be used to analyze sequences for other purposes in biology or cryptology. AVAILABILITY: On request from the authors. SUPPLEMENTARY INFORMATION: http://bioinformatics.psb.ugent.be/.  相似文献   

2.
当前,基于生物质谱进行蛋白质鉴定的技术已经成为蛋白质组学研究的支撑技术之一.产生的数据主要使用数据库搜索的方法进行处理,这种方法的一大缺陷是不能鉴定数据库中未包含的蛋白质,因此如何充分利用质谱数据对蛋白质组研究的意义很大,而新蛋白质鉴定更是其中一个重要的内容.新蛋白质鉴定是蛋白质鉴定的一个方面,新蛋白质的定义按照序列和功能的已知程度分为3个层次;以蛋白质鉴定的方法为基础,目前新蛋白质鉴定的方法可分为denovo测序和相似序列搜索结合的方法以及搜索EST、基因组等核酸数据库的方法2大类;两者各有利弊.存在各自的问题和相应处理的策略.不同的研究者可以根据具体目的应用和发展不同的鉴定方法,同时新蛋白质的鉴定也将随着蛋白质组学研究的发展而更加完善.  相似文献   

3.
A fast search algorithm to reveal similar polypeptide backbone structural motifs in proteins is proposed. It is based on the vector representation of a polypeptide chain fold in which the elements of regular secondary structures are approximated by linear segments (Abagyan and Maiorov, J. Biomol. Struct. Dyn. 5, 1267-1279 (1988)). The algorithm permits insertions and deletions in the polypeptide chain fragments to be compared. The fast search algorithm implemented in FASEAR program is used for collecting beta alpha beta supersecondary structure units in a number of alpha/beta proteins of Brookhaven Data Bank. Variation of geometrical parameters specifying backbone chain fold is estimated. It appears that the conformation of the majority of the fragments, although almost all of them are right-handed, is quite different from that of standard beta alpha beta units. Apart from searching for specific type of secondary structure motif, the algorithm allows automatically to identify new recurrent folding patterns in proteins. It may be of particular interest for the development of tertiary template approach for prediction of protein three-dimensional structure as well for constructing artificial polypeptides with goal-oriented conformation.  相似文献   

4.
This paper provides an overview of the research that has been carried out in Sheffield over the last decade into searching techniques for databases of three-dimensional (3D) chemical structures. A 3D structure or query pattern is represented by a labelled graph, in which the nodes and the edges of the graph are used to represent atoms and the associated inter-atomic distances, respectively. The presence of a pharmacophore in each of the structures in a database can then be tested by means of a subgraph isomorphism algorithm, the computational requirements of which are minimized by the use of an initial screening procedure that eliminates the majority of the structures from the subgraph-isomorphism search. Analogous graph-based representation and searching methods can also be used with flexible 3D structures: in this case, the edges of the graphs represent inter-atomic distance ranges and a final conformational search needs to be carried out for those molecules that match the query pharmacophore in the subgraph-isomorphism search. The paper also reviews related work on the automatic identification of pharmacophoric patterns and on 3D similarity searching.  相似文献   

5.
Abstract

A fast search algorithm to reveal similar polypeptide backbone structural motifs in proteins is proposed. It is based on the vector representation of a polypeptide chain fold in which the elements of regular secondary structures are approximated by linear segments (Abagyan and Maiorov, J. Biomol. Struct. Dyn. 5, 1267–1279 (1988)). The algorithm permits insertions and deletions in the polypeptide chain fragments to be compared. The fast search algorithm implemented in FASEAR program is used for collecting βαβ supersecondary structure units in a number of α/β proteins of Brookhaven Data Bank. Variation of geometrical parameters specifying backbone chain fold is estimated. It appears that the conformation of the majority of the fragments, although almost all of them are right-handed, is quite different from that of standard βαβ units. Apart from searching for specific type of secondary structure motif, the algorithm allows automatically to identify new recurrent folding patterns in proteins. It may be of particular interest for the development of tertiary template approach for prediction of protein three-dimensional structure as well for constructing artificial polypeptides with goal-oriented conformation.  相似文献   

6.
In searches for homology among nucleotide binding proteins, recent reports have described primary structure alignments for stretches of 30 or so amino acid residues among a variety of proteins including the ras and src oncogene products. The significance of these sequence matches has been tested by searching in available data banks for certain conserved residue patterns resulting from the alignments. The tests suggest that alignments over these limited stretches are not necessarily justifiable and any implications for residues involved in nucleotide binding must be viewed with caution.  相似文献   

7.
A substructure matching algorithm is described that can be used for the automatic identification of secondary structural motifs in three-dimensional protein structures from the Protein Data Bank. The proteins and motifs are stored for searching as labelled graphs, with the nodes of a graph corresponding to linear representations of helices and strands and the edges to the inter-line angles and distances. A modification of Ullman's subgraph isomorphism algorithm is described that can be used to search these graph representations. Tests with patterns from the protein structure literature demonstrate both the efficiency and the effectiveness of the search procedure, which has been implemented in FORTRAN 77 on a MicroVAX-II system, coupled to the molecular fitting program FRODO on an Evans and Sutherland PS300 graphics system.  相似文献   

8.
A measure of protein structure similarity is calculated from the matching of pairs of secondary structure elements between two proteins. The interaction of each pair was estimated from their axial line segments and combined with other geometric features to produce an optimal discrimination between intrafamily and interfamily relationships. The matching used a fast bipartite graph-matching algorithm that avoids the computational complexity of searching for the full subgraph isomorphism between the two sets of interactions. The main algorithm used was the "stable marriage" algorithm, which works on the ranked "preferences" of one interaction for another. The method takes 1/10 of a second for a typical comparison making it suitable as a fast pre-filter for slower, more exhaustive approaches. An application to protein structure classification is described.  相似文献   

9.
Lai WK  Buck MJ 《Genome biology》2010,11(12):R126-10
To facilitate identification and characterization of genomic functional elements, we have developed a chromatin architecture alignment algorithm (ArchAlign). ArchAlign identifies shared chromatin structural patterns from high-resolution chromatin structural datasets derived from next-generation sequencing or tiled microarray approaches for user defined regions of interest. We validated ArchAlign using well characterized functional elements, and used it to explore the chromatin structural architecture at CTCF binding sites in the human genome. ArchAlign is freely available at http://www.acsu.buffalo.edu/~mjbuck/ArchAlign.html.  相似文献   

10.
11.
RNAMotif, an RNA secondary structure definition and search algorithm   总被引:26,自引:7,他引:19       下载免费PDF全文
RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures are assembled from a collection of RNA structural motifs. These basic building blocks are used repeatedly, and in various combinations, to form different RNA types and define their unique structural and functional properties. Identification of recurring RNA structural motifs will therefore enhance our understanding of RNA structure and help associate elements of RNA structure with functional and regulatory elements. Our goal was to develop a computer program that can describe an RNA structural element of any complexity and then search any nucleotide sequence database, including the complete prokaryotic and eukaryotic genomes, for these structural elements. Here we describe in detail a new computational motif search algorithm, RNAMotif, and demonstrate its utility with some motif search examples. RNAMotif differs from other motif search tools in two important aspects: first, the structure definition language is more flexible and can specify any type of base–base interaction; second, RNAMotif provides a user controlled scoring section that can be used to add capabilities that patterns alone cannot provide.  相似文献   

12.
Multiwavelength ultraviolet/visible (UV-Vis) spectra of microorganisms and cell suspensions contain quantitative information on properties such as number, size, shape, chemical composition, and internal structure of the suspended particles. These properties are essential for the identification and classification of microorganisms and cells. The complexity of microorganisms in terms of their chemical composition and internal structure make the interpretation of their spectral signature a difficult task. In this paper, a model is proposed for the quantitative interpretation of spectral patterns resulting from transmission measurements of prokaryotic microorganism suspensions. It is also demonstrated that different organisms give rise to spectral differences that may be used for their identification and classification. The proposed interpretation model is based on light scattering theory, spectral deconvolution techniques, and on the approximation of the frequency dependent optical properties of the basic constituents of living organisms. The quantitative deconvolution in terms of the interpretation model yields critical information necessary for the detection and identification of microorganisms, such as size, dry mass, dipicolinic acid concentration, nucleotide concentration, and an average representation of the internal scattering elements of the organisms. E. coli, P. agglomerans, B. subtilis spores, and vegetative cells and spores of Bacillus globigii are used as case studies. It is concluded that spectroscopy techniques coupled with effective interpretation models are applicable to a wide range of cell types found in diverse environments.  相似文献   

13.
MOTIVATION: Microarrays have become a central tool in biological research. Their applications range from functional annotation to tissue classification and genetic network inference. A key step in the analysis of gene expression data is the identification of groups of genes that manifest similar expression patterns. This translates to the algorithmic problem of clustering genes based on their expression patterns. RESULTS: We present a novel clustering algorithm, called CLICK, and its applications to gene expression analysis. The algorithm utilizes graph-theoretic and statistical techniques to identify tight groups (kernels) of highly similar elements, which are likely to belong to the same true cluster. Several heuristic procedures are then used to expand the kernels into the full clusters. We report on the application of CLICK to a variety of gene expression data sets. In all those applications it outperformed extant algorithms according to several common figures of merit. We also point out that CLICK can be successfully used for the identification of common regulatory motifs in the upstream regions of co-regulated genes. Furthermore, we demonstrate how CLICK can be used to accurately classify tissue samples into disease types, based on their expression profiles. Finally, we present a new java-based graphical tool, called EXPANDER, for gene expression analysis and visualization, which incorporates CLICK and several other popular clustering algorithms. AVAILABILITY: http://www.cs.tau.ac.il/~rshamir/expander/expander.html  相似文献   

14.
We present an improved version of our Protein Peeling web server dedicated to the analysis of protein structure architecture through the identification of protein units produced by an iterative splitting algorithm. New features include identification of structural domains, detection of unstructured terminal elements and evaluation of the stability of protein unit structures. AVAILABILITY: The website is free and open to all users with no login requirements at http://www.dsimb.inserm.fr/dsimb-tools/peeling3.  相似文献   

15.
16.
Chaos Game Representation (CGR) can recognize patterns in the nucleotide sequences, obtained from databases, of a class of genes using the techniques of fractal structures and by considering DNA sequences as strings composed of four units, G, A, T and C. Such recognition of patterns relies only on visual identification and no mathematical characterization of CGR is known. The present report describes two algorithms that can predict the presence or absence of a stretch of nucleotides in any gene family. The first algorithm can be used to generate DNA sequences represented by any point in the CGR. The second algorithm can simulate known CGR patterns for different gene families by setting the probabilities of occurrence of different di- or trinucleotides by a trial and error process using some guidelines and approximate rules-of-thumb. The validity of the second algorithm has been tested by simulating sequences that can mimic the CGRs of vertebrate non-oncogenes, proto-oncogenes and oncogenes. These algorithms can provide a mathematical basis of the CGR patterns obtained using nucleotide sequences from databases.  相似文献   

17.
18.
The problem of storage of the sequences of a number of closely related genomes and analysis of genome variations is considered. A genome graph with the structure of an acyclic directed graph is used to store matching sections of sequences and known variants. An algorithm for rapid mapping of reads to the genome graph is developed to align the individual nucleotide sequence fragments to the genome graph. The algorithm combines rapid searching using hash tables with the algorithm of dynamic programming and solves the problem of exponential growth in the number of paths on the graph. The implementation of the genome graph and the algorithm of the alignment of reads is developed. A comparison with the best-known programs with similar functionality is made.  相似文献   

19.
LTR_STRUC: a novel search and identification program for LTR retrotransposons   总被引:10,自引:0,他引:10  
MOTIVATION: Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to identify and analyze members of this important class of transposable elements. RESULTS: We have developed a new data-mining program, LTR_STRUC (LTR retrotransposon structure program) which identifies and automatically analyzes LTR retrotransposons in genome databases by searching for structural features characteristic of such elements. LTR_STRUC has significant advantages over conventional search methods in the case of LTR retrotransposon families having low sequence homology to known queries or families with atypical structure (e.g. non-autonomous elements lacking canonical retroviral ORFs) and is thus a discovery tool that complements established methods. LTR_STRUC finds LTR retrotransposons using an algorithm that encompasses a number of tasks that would otherwise have to be initiated individually by the user. For each LTR retrotransposon found, LTR_STRUC automatically generates an analysis of a variety of structural features of biological interest. AVAILABILITY: The LTR_STRUC program is currently available as a console application free of charge to academic users from the authors.  相似文献   

20.
Structural elements in RNA molecules have a distinct nucleotide composition, which changes gradually over evolutionary time. We discovered certain features of these compositional patterns that are shared between all RNA families. Based on this information, we developed a structure prediction method that evaluates candidate structures for a set of homologous RNAs on their ability to reproduce the patterns exhibited by biological structures. The method is named SPuNC for ‘Structure Prediction using Nucleotide Composition’. In a performance test on a diverse set of RNA families we demonstrate that the SPuNC algorithm succeeds in selecting the most realistic structures in an ensemble. The average accuracy of top-scoring structures is significantly higher than the average accuracy of all ensemble members (improvements of more than 20% observed). In addition, a consensus structure that includes the most reliable base pairs gleaned from a set of top-scoring structures is generally more accurate than a consensus derived from the full structural ensemble. Our method achieves better accuracy than existing methods on several RNA families, including novel riboswitches and ribozymes. The results clearly show that nucleotide composition can be used to reveal the quality of RNA structures and thus the presented technique should be added to the set of prediction tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号