首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water is the major constituent of environmental medium and biological systems. The effects occurring in water as a result of low-intensity electromagnetic irradiation (EMI) in extremely high frequencies are supposed to be the primary mechanism to create conditions for biological responses. The EMI effects on Escherichia coli, after irradiation of their suspension, are most probably water-mediated. Indirect effects of EMI at 51.8, 53, 70.6, and 73 GHz frequencies on bacteria, through water, assay buffer (Tris–phosphate buffer with inorganic salts at low or moderate concentrations), or peptone growth medium were studied. The mediated effects of 70.6 and 73 GHz irradiated water, assay buffer, and growth medium on E. coli growth characteristics were insignificant. But the results were different for 51.8 and 53 GHz. EMI mediated effects on bacterial growth were clearly demonstrated. The effects were more strongly expressed with 53 GHz. Moreover, it was shown that 70.6 and 73 GHz similarly suppressed the cell growth after direct irradiation of E. coli in water or on solid medium. Interestingly, for 51.8 and 53 GHz the bacterial growth decreases after suspension irradiation was less, compared to the direct irradiation of bacteria on solid medium. Especially, it was also more expressed in case of 53 GHz. Also with electron microscopy, EMI-induced bacterial cell sizes and structure different changes were detected. In addition, the distinguished changes in surface tension, oxidation–reduction potential and pH of water, assay buffer, growth medium, and bacterial suspension were determined. They depended on EMI frequency used. The differences could be associated with the partial absorbance of EMI energy by the surrounding medium, which depends on a specific frequency. The results are crucial to understand biophysical mechanisms of EMI effects on bacteria.  相似文献   

2.
A rapid biosensor for the detection of bacterial growth was developed using micromechanical oscillators coated in common nutritive layers. The change in resonance frequency as a function of the increasing mass on a cantilever array forms the basis of the detection scheme. The calculated mass sensitivity according to the mechanical properties of the cantilever sensor is ~50 pg/Hz; this mass corresponds to an approximate sensitivity of ~100 Escherichia coli cells. The sensor is able to detect active growth of E. coli cells within 1 h. The starting number of E. coli cells initially attached to the sensor cantilever was, on average, ~1,000 cells. Furthermore, this method allows the detection of selective growth of E. coli within only 2 h by adding antibiotics to the nutritive layers. The growth of E. coli was confirmed by scanning electron microscopy. This new sensing method for the detection of selective bacterial growth allows future applications in, e.g., rapid antibiotic susceptibility testing.  相似文献   

3.
Many literature reports suggest that at least one of the mechanisms of action of low-frequency pulsing electromagnetic fields (PEMFs) is to favor Ca++ movement into the cell. Ca1 influx Is a fundamental step In the activation process of lymphocytes by lectins. We report here the results of the exposure of human normal and chronic lymphocytic leukemia (CLL) lymphocytes to lectins and PEMFs. Simultaneous exposure to PEMFs and mitogens significantly increased the number of normal responsive lymphocytes compared to those exposed to the mitogens alone. Almost all the normal lymphocytes entered into the mitotic cycle. The number of CLL lymphocytes stimulated by simultaneous exposure to PEMFs and lectins was doubled compared with lectin exposure alone. Ca?1 influx was increased when the cultures were exposed to PEMFs. The stimulatory effect of PEMFs was mediated by an increased release of some B-cell growth factor by the T-Zymphocytes.  相似文献   

4.
This study investigated the occurrence of 12 veterinary antibiotics (VAs) and the susceptibility of Escherichia coli (E. coli) in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L−1. The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.  相似文献   

5.
6.
General-diffusion porins form large β-barrel channels that control the permeability of the outer membrane of gram-negative bacteria to nutrients, some antibiotics, and external signals. Here, we have analyzed the effects of mutations in the OmpU porin of Vibrio cholerae at conserved residues that are known to affect pore properties in the Escherichia coli porins OmpF and OmpC. Various phenotypes were investigated, including sensitivity to β-lactam antibiotics, growth on large sugars, and sensitivity to and biofilm induction by sodium deoxycholate, a major bile component that acts as an external signal for multiple cellular responses of this intestinal pathogen. Overall, our results indicate that specific residues play different roles in controlling the passage of various compounds. Mutations of barrel wall arginine residues that protrude in the pore affect pore size and growth in the presence of large sugars or sodium deoxycholate. Sensitivity to large cephalosporins is mostly affected by D116, located on the L3 loop, whose homolog in E. coli, OmpF, is a known binding determinant for these drugs. L3 loop residues also affect biofilm induction. The results are interpreted in terms of a homology model based on the structures of E. coli porins.  相似文献   

7.
Comparisons of enrichment methods (with or without antibiotics and with or without a preenrichment step) using gram-negative (GN) broth or tryptic soy broth (TSB) were conducted with feeds inoculated with Escherichia coli O157:H7. TSB was more sensitive than GN broth, and TSB with a preenrichment step followed by TSB with antibiotics was more sensitive than plain TSB enrichment, in detecting E. coli O157 in inoculated feeds. Feed samples were collected from feed bunks from 54 feedlots to determine the prevalence of E. coli O157 in cattle feeds. TSB preenrichment followed by TSB with antibiotics and the standard GN broth enrichment were used for each feed sample. All samples underwent immunomagnetic separation and were plated onto sorbitol MacConkey agar with cefixime and potassium tellurite. Identification of E. coli O157 was based on indole production, positive latex agglutination for O157 antigen, API 20E test strip results, PCR for the eaeA gene, and the presence of at least one Shiga toxin. E. coli O157 was detected in 52 of 504 feed samples (10.3%) by using GN broth enrichment and in 46 of 504 feed samples (9.1%) by using TSB followed by TSB supplemented with cefixime and vancomycin. E. coli O157 was detected in 75 of 504 feed bunk samples (14.9%) by one or both methods. There was no correlation between E. coli O157 prevalence and generic coliform counts in feeds. The prevalence of E. coli O157 in cattle feed warrants further studies to increase our knowledge of the on-farm ecology of E. coli O157 in order to develop strategies to prevent food-borne disease in humans.  相似文献   

8.
9.
This paper describes a possible application of luminescent Escherichia coli activated by blood serum for high-sensitivity and high-specificity assays of antibiotics in solutions. Antibiotics inhibited luminescence of a genetically engineered E. coli strain; the system sensitivity to some antibiotics grew notably after the cells had been preactivated by blood serum. The highest level of sensitivity (2.8 ± 0.6 ng/ml) of luminescent cells was obtained for aminoglycoside antibiotics (gentamicin and streptomycin). It is feasible to create the specific biosensor for antibiotics on the basis of bioluminescent E. coli strains by applying sera containing antibodies against the antibiotic under assay. The presence of antibodies specific for gentamicin in serum affects inhibition of luminescent cells by gentamicin but not inhibition by other antibiotics.  相似文献   

10.
A total of 50 Escherichia coli were isolated from buffalo meat and their antibiotic profiling was carried out. 90% E. coli isolates showed resistant to two or more classes of 21 commonly used antibiotics. Moreover, there was also variation in resistance/sensitivity behavior towards antibiotics. Highest resistance was found to be against methicillin (84%) in the isolates followed by vancomicin (70%), sulphadiazine (68%) and cefaclor (66%), whereas, resistance was less common for kanamycin (8%) and chloramphenicol (4%). ECMB1, ECMA2, ECMA8, ECMS9 and ECMA31 strains showed highest MDR pattern with presence of blaCTX-M, qnr S and qnr B resistant genes. ECMB1 strain was resistant to 14 antibiotics belonging to 7 different classes. Therefore, ECMB1 was selected for further studies. Sodium Alginate Film incorporated with 10, 20, and 30% ethanolic extract of Syzygium cumini (EESC) were formulated and characterized using state-of-art techniques. A dose-dependent antibacterial activity against E. coli ECMB1 was recorded by the films made from EESC (EESCF). The growth kinetics of E. coli strain ECMB1 showed 9% decrease in log CFU when it was cultured in 30% EESCF as compared to control cells after 12 h of growth. Present finding highlight the efficacy and possible use of EESCF as meat packaging film to prevent food spoilage caused by MDR bacteria.  相似文献   

11.
Wild-type bacteriophage T4 and DNA-delay am mutants defective in genes 39, 52, 60 and 58–61 were tested for intracellular sensitivity to the antibiotics coumermycin and novobiocin, drugs which inhibit the DNA gyrase of Escherichia coli. Treatment with these antibiotics drastically reduced the characteristic growth of gene 39, 52 and 60 DNA-delay am mutants in E. coli lacking an amber suppressor (su?). Wild-type phage-infected cells were unaffected by the drugs while the burst size of a gene 58–61 mutant was affected to an intermediate extent. A su?E. coli strain which is resistant to coumermycin due to an altered gyrase permitted growth of the DNA-delay am mutants in the presence of the drug. Thus, the characteristic growth of the DNA-delay am mutants in an su? host apparently depends on the host gyrase. An E. coli himB mutant is defective in the coumermycin-sensitive subunit of gyrase (H. I. Miller, personal communication). Growth of the gene 39, 52 and 60 am mutants was inhibited in the himB mutant while the gene 58–61 mutant and wild-type T4 showed small reductions in burst size in this host. Experiments with nalidixic acid-sensitive and resistant strains of E. coli show that wild-type phage T4 requires a functional nalA protein for growth.Novobiocin and coumermycin inhibit phage DNA synthesis in DNA-delay mutant-infected su?E. coli if added during the early logarithmic phase of phage DNA synthesis. The gene 58–61 mutant showed the smallest inhibition of DNA synthesis in the presence of the drugs. Addition of the drugs during the late linear phase of phage DNA synthesis had no effect on further synthesis in DNA-delay mutant-infected cells. Coumermycin and novobiocin had no effect on DNA synthesis in wild-type-infected cells regardless of the time of addition of the antibiotics. Models are considered in which the DNA-delay gene products either form an autonomous phage gyrase or interact with the host gyrase and adapt it for proper initiation of phage DNA replication.  相似文献   

12.
脉冲电磁场对家猪淋巴细胞的细胞遗传学效应   总被引:4,自引:0,他引:4  
邹方东  徐柳  王子淑  王喜忠 《动物学研究》2001,22(2):89-92,T001
以家猪外周血淋巴细胞为材料,研究了脉冲电磁场(pulsing electromagnetic fields,简称PEMFS)树细胞的遗传学效应,实验发现,100和200kHz的PEMFs对家猪的淋巴细胞照射培养12,24,48h后,染色体畸变(包括非整倍体,染色体断裂等)频率明显高于对照组(P<0.05),其中,56%的染色体或染色单体断裂和42%的间隙发生在家猪常见染色体脆性位点部位,同时, 经100kHz和200kHz的PEMFs照射48h后,淋巴细胞姐妹染色单体交换(SCE)频率也明显高于对照组(P<0.05),实验结果表明,PEMFS能诱导DNA损伤和染色体畸变。  相似文献   

13.
Consumption of E. coli cells by Daphnia magna was studied. It was found that this organism not only ingested E. coli cells but digested them as demonstrated by the release of 14CO2 originating from E. coli grown on 14C-glucose, and by the transfer of the radioactive label from parental Daphnia to their progenies. In addition the effect of antibiotics on the consumption of E. coli cells by Daphnia magna was studied. In long incubation times, antibiotics inhibited bacterial uptake by Daphnia. The microflora isolated from Daphnia was found to be capable of causing leakage of enzymes out of E. coli cells thus playing at least a partial role in the digestion of E. coli cells by Daphnia.  相似文献   

14.
The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets.  相似文献   

15.
Isogenic knockout mutants of Escherichia coli deficient in components of the glutathione and thioredoxin redox systems and growing at various temperatures (20–46°C) exhibited considerable differences in growth rate and survival, as well as in expression of the antioxidant genes. In the parental strain E. coli BW25113 (wt) treated with ciprofloxacin, ampicillin, or streptomycin, dependence of survival on growth temperature was a V-shaped curve with the maximum sensitivity within the range corresponding to high growth rates (40–44°C). Significant inverse correlation was observed between log CFU at different temperatures and specific growth rate prior to antibiotic addition. This applied to most of the mutants, which exhibited higher resistance to the three antibiotics tested at nonoptimal temperatures (20 and 46°C) than at 37 and 40°C. No correlation was found between resistance to stress and antibiotics and expression of the antioxidant genes. The role of global regulators ppGpp and σs in E. coli resistance to antibiotics and nonoptimal temperatures was shown.  相似文献   

16.
Persister cells (persisters) are transiently tolerant to antibiotics and usually constitute a small part of bacterial populations. Persisters remain dormant but are able to re-grow after antibiotic treatment. In this study we found that the frequency of persisters correlated to the level of protein aggregates accumulated in E. coli stationary-phase cultures. When 3-(N-morpholino) propanesulfonic acid or an osmolyte (trehalose, betaine, glycerol or glucose) were added to the growth medium at low concentrations, proteins were prevented from aggregation and persister formation was inhibited. On the other hand, acetate or high concentrations of osmolytes enhanced protein aggregation and the generation of persisters. We demonstrated that in the E. coli stationary-phase cultures supplemented with MOPS or a selected osmolyte, the level of protein aggregates and persister frequency were not correlated with such physiological parameters as the extent of protein oxidation, culturability, ATP level or membrane integrity. The results described here may help to understand the mechanisms underlying persister formation.  相似文献   

17.
TBsmr is a secondary active multidrug transporter from Mycobacterium tuberculosis that transports a plethora of compounds including antibiotics and fluorescent dyes. It belongs to the small multidrug resistance (SMR) superfamily and is structurally and functionally related to E. coli EmrE. Of particular importance is the link between protein function, oligomeric state and lipid composition. By freeze fracture EM, we found three different size distributions in three different lipid environments for TBsmr indicating different oligomeric states. The link of these states with protein activity has been probed by fluorescence spectroscopy revealing significant differences. The drug binding site has been probed further by 19F-MAS NMR through chemical labeling of native cysteine residues showing a water accessible environment in agreement with the alternating access model.  相似文献   

18.
The AtoS–AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS–AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5–4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS–atoC locus (ΔatoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the ΔatoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS–AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS–AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.  相似文献   

19.

Background

Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation.

Methods

In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog™ Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12.

Conclusion

This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.  相似文献   

20.
Prior work showed that expression of acyl carrier proteins (ACPs) of a diverse set of bacteria replaced the function of Escherichia coli ACP in lipid biosynthesis. However, the AcpAs of Lactococcus lactis and Enterococcus faecalis were inactive. Both failed to support growth of an E. coli acpP mutant strain. This defect seemed likely because of the helix II sequences of the two AcpAs, which differed markedly from those of the proteins that supported growth. To test this premise, chimeric ACPs were constructed in which L. lactis helix II replaced helix II of E. coli AcpP and vice versa. Expression of the AcpP protein L. lactis AcpA helix II allowed weak growth, whereas the L. lactis AcpA-derived protein that contained E. coli AcpP helix II failed to support growth of the E. coli mutant strain. Replacement of the L. lactis AcpA helix II residues in this protein showed that substitution of valine for the phenylalanine residue four residues downstream of the phosphopanthetheine-modified serine gave robust growth and allowed modification by the endogenous AcpS phosphopantetheinyl transferase (rather than the promiscuous Sfp transferase required to modify the L. lactis AcpA and the chimera of L. lactis AcpA helix II in AcpP). Further chimera constructs showed that the lack of function of the L. lactis AcpA-derived protein containing E. coli AcpP helix II was due to incompatibility of L. lactis AcpA helix I with the downstream elements of AcpP. Therefore, the origins of ACP incompatibility can reside in either helix I or in helix II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号