首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonhomologous end-joining (NHEJ) is one of the repair pathways for double-strand breaks (DSBs) in eukaryotic cells. By using linearized plasmid substrates, we have detected intramolecular NHEJ activity in a cell-free extract from the cultured silkworm cell line BmN4. The efficiency of NHEJ differed according to the structure of DNA ends; approximately 1% of input DNA was repaired when the substrate had cohesive ends. The reaction required the hydrolysis of nucleotide triphosphate; interestingly, all of four rNTPs or four dNTPs could support the reaction. A substrate with non-complementary DNA ends was mainly repaired by the DNA polymerase-mediated pathway. These results indicate that the present cell-free system will be useful to analyze the molecular mechanisms of DSB repair and NHEJ in insect cells.  相似文献   

2.
The Saccharomyces cerevisiae RAD18 gene is essential for postreplication repair but is not required for homologous recombination (HR), which is the major double-strand break (DSB) repair pathway in yeast. Accordingly, yeast rad18 mutants are tolerant of camptothecin (CPT), a topoisomerase I inhibitor, which induces DSBs by blocking replication. Surprisingly, mammalian cells and chicken DT40 cells deficient in Rad18 display reduced HR-dependent repair and are hypersensitive to CPT. Deletion of nonhomologous end joining (NHEJ), a major DSB repair pathway in vertebrates, in rad18-deficient DT40 cells completely restored HR-mediated DSB repair, suggesting that vertebrate Rad18 regulates the balance between NHEJ and HR. We previously reported that loss of NHEJ normalized the CPT sensitivity of cells deficient in poly(ADP-ribose) polymerase 1 (PARP1). Concomitant deletion of Rad18 and PARP1 synergistically increased CPT sensitivity, and additional inactivation of NHEJ normalized this hypersensitivity, indicating their parallel actions. In conclusion, higher-eukaryotic cells separately employ PARP1 and Rad18 to suppress the toxic effects of NHEJ during the HR reaction at stalled replication forks.  相似文献   

3.
In mammalian cells, non-homologous end joining (NHEJ) is the major double strand break (DSB) repair mechanism during the G(1) phase of the cell cycle. It also contributes to DSB repair during the S and G(2) phases. Ku heterodimer, DNA PKcs, XRCC4 and DNA Ligase IV constitute the core NHEJ machinery, which joins directly ligatable ends. XRCC4-like factor/Cernunnos (XLF/Cer) is a recently discovered interaction partner of XRCC4. Current evidence suggests the following model for the role of XLF/Cer in NHEJ: after DSB induction, the XRCC4-DNA Ligase IV complex promotes efficient accumulation of XLF/Cer at DNA damage sites via constitutive interaction of the XRCC4 and XLF/Cer head domains and dependent on components of the DNA PK complex. Ku alone can stabilise the association of XLF/Cer with DNA ends. XLF/Cer stimulates ligation of complementary and non-complementary DNA ends by XRCC4-DNA Ligase IV. This activity involves the carboxy-terminal DNA binding region of XLF/Cer and could occur via different, non-exclusive modes: (i) enhancement of the stability of the XRCC4-DNA Ligase IV complex on DNA ends by XLF/Cer, (ii) modulation of the efficiency and/or specificity of DNA Ligase IV by binding of XLF/Cer to the XRCC4-DNA Ligase IV complex, (iii) promotion of the alignment of blunt or other non-complementary DNA ends by XLF/Cer for ligation. XLF/Cer promotes the preservation of 3' overhangs, restricts nucleotide loss and thereby promotes accuracy of DSB joining by XRCC4-DNA Ligase IV during NHEJ and V(D)J recombination.  相似文献   

4.
DNA topoisomerase I (Top1) generates transient DNA single-strand breaks via the formation of cleavage complexes in which the enzyme is linked to the 3'-phosphate of the cleavage strand. The anticancer drug camptothecin (CPT) poisons Top1 by trapping cleavage complexes, thereby inducing Top1-linked single-strand breaks. Such DNA lesions are converted into DNA double-strand breaks (DSBs) upon collision with replication forks, implying that DSB repair pathways could be involved in the processing/repair of Top1-mediated DNA damage. Here we report that Top1-mediated DNA damage is repaired primarily by homologous recombination, a major pathway of DSB repair. Unexpectedly, however, we found that nonhomologous end joining (NHEJ), another DSB repair pathway, has no positive role in the relevant repair; notably, DT40 cell mutants lacking either of the NHEJ factors (namely, Ku70, DNA-dependent protein kinase catalytic subunit, and DNA ligase IV) were resistant to killing by CPT. In addition, we showed that the absence of NHEJ alleviates the requirement of homologous recombination in the repair of CPT-induced DNA damage. Our results indicate that NHEJ can be a cytotoxic pathway in the presence of CPT, shedding new light on the molecular mechanisms for the formation and repair of Top1-mediated DNA damage in vertebrates. Thus, our data have significant implications for cancer chemotherapy involving Top1 inhibitors.  相似文献   

5.
DNA double-strand breaks (DSB) represent a major disruption in the integrity of the genome. DSB can be generated when a replication fork encounters a DNA lesion. Recombinational repair is known to resolve such replication fork-associated DSB, but the molecular mechanism of this repair process is poorly understood in mammalian cells. In the present study, we investigated the molecular mechanism by which recombination resolves camptothecin (CPT)-induced DSB at DNA replication forks. The frequency of homologous recombination (HR) was measured using V79/SPD8 cells which contain a duplication in the endogenous hprt gene that is resolved by HR. We demonstrate that DSB associated with replication forks induce HR at the hprt gene in early S phase. Further analysis revealed that these HR events involve an exchange mechanism. Both the irs1SF and V3-3 cell lines, which are deficient in HR and non-homologous end joining (NHEJ), respectively, were found to be more sensitive than wild-type cells to DSB associated with replication forks. The irs1SF cell line was more sensitive in this respect than V3-3 cells, an observation consistent with the hypothesis that DSB associated with replication forks are repaired primarily by HR. The frequency of formation of DSB associated with replication forks was not affected in HR and NHEJ deficient cells, indicating that the loss of repair, rather than the formation of DSB associated with replication forks is responsible for the increased sensitivity of the mutant strains. We propose that the presence of DSB associated with replication forks rapidly induces HR via an exchange mechanism and that HR plays a more prominent role in the repair of such DSB than does NHEJ.  相似文献   

6.
Efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, DSBs are preferentially repaired by non-homologous end-joining (NHEJ). We have previously described a new DSBs microhomology end-joining pathway depending on PARP-1 and the XRCC1/DNA ligase III complex. In this study we analysed, with recombinant proteins and protein extracts, the effect of DSB end sequences: (i) on the DSB synapsis activity; (ii) on the end-joining activity. We report that PARP-1 DSB synapsis activity is independent of the DSB sequence and could be detected with non-complementary DSBs. We demonstrate also that the efficiency of DSBs repair by PARP-1 NHEJ is strongly dependent on the presence of G:C base pairs at microhomology termini. These results highlight a new role of the PARP-1 protein on the synapsis of DSBs and could explain why the PARP-1 NHEJ pathway is strongly dependent on the DSBs microhomology sequence.  相似文献   

7.
Raghavan SC  Raman MJ 《DNA Repair》2004,3(10):1297-1310
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.  相似文献   

8.
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSBs are nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ is an intrinsically error-prone pathway while HR results in accurate repair. To understand the origin of genomic instability in human cells it is important to know the contribution of each DSB repair pathway. Studies of rodent cells and human cancer cell lines have shown that the choice between NHEJ or HR pathways depends on cell cycle stage. Surprisingly, cell cycle regulation of DSB repair has not been examined in normal human cells with intact cell cycle checkpoints. Here we measured the efficiency NHEJ and HR at different cell cycle stages in hTERT-immortalized diploid human fibroblasts. We utilized cells with chromosomally-integrated fluorescent reporter cassettes, in which a unique DSB is introduced by a rare-cutting endonuclease. We show that NHEJ is active throughout the cell cycle, and its activity increases as cells progress from G1 to G2/M (G1 < S < G2/M). HR is nearly absentin G1, most active in the S phase, and declines in G2/M. Thus, inG2/M NHEJ is elevated, while HR is on decline. This is in contrastto a general belief that NHEJ is most active in G1, while HR isactive in S, G2 and M. The overall efficiency of NHEJ was higherthan HR at all cell cycle stages. We conclude that human somaticcells utilize error-prone NHEJ as the major DSB repair pathway atall cell cycle stages, while HR is used, primarily, in the S phase.  相似文献   

9.
Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by gammaH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB in mammalian cells.  相似文献   

10.
Smarcal1 is a SWI/SNF-family protein with an ATPase domain involved in DNA-annealing activities and a binding site for the RPA single-strand-DNA-binding protein. Although the role played by Smarcal1 in the maintenance of replication forks has been established, it remains unknown whether Smarcal1 contributes to genomic DNA maintenance outside of the S phase. We disrupted the SMARCAL1 gene in both the chicken DT40 and the human TK6 B cell lines. The resulting SMARCAL1−/− clones exhibited sensitivity to chemotherapeutic topoisomerase 2 inhibitors, just as nonhomologous end-joining (NHEJ) null-deficient cells do. SMARCAL1−/− cells also exhibited an increase in radiosensitivity in the G1 phase. Moreover, the loss of Smarcal1 in NHEJ null-deficient cells does not further increase their radiosensitivity. These results demonstrate that Smarcal1 is required for efficient NHEJ-mediated DSB repair. Both inactivation of the ATPase domain and deletion of the RPA-binding site cause the same phenotype as does null-mutation of Smarcal1, suggesting that Smarcal1 enhances NHEJ, presumably by interacting with RPA at unwound single-strand sequences and then facilitating annealing at DSB ends. SMARCAL1−/−cells showed a poor accumulation of Ku70/DNA-PKcs and XRCC4 at DNA-damage sites. We propose that Smarcal1 maintains the duplex status of DSBs to ensure proper recruitment of NHEJ factors to DSB sites.  相似文献   

11.
Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position between HeLa and HCT116 cell lines in regard to sensitivity to MNU according to MTT-assay and the number of secondary DSBs formed in MNU-treated cells. Nevertheless, in contrast to HeLa cells, these breaks did not induce apoptosis in Colo320 cells. Our data confirm the assumption about case/effect relationship between secondary DNA double strand breaks, induced by monofunctional methylating agent MNU, and functioning of MMR in human tumor cells.  相似文献   

12.
In mammalian cells repair of radiation-induced DNA damage appears to be also controlled by the epidermal growth factor receptor (EGFR) with a special impact on DNA double-strand break (DSB) repair. Aim of this study was to demonstrate this interaction between EGFR signalling and DNA DSB repair and to identify the underlying downstream pathways. We especially wanted to know in how far non-homologous end-joining (NHEJ) as the most important DSB repair pathway is involved in this interaction. Overall DSB repair was determined by counting γH2AX foci remaining 24 after irradiation, while NHEJ activity was monitored by using a specially designed repair construct stably integrated into the genome. The overall DSB repair capacity was clearly enhanced when EGFR was activated by its natural ligand EGF and, vice versa, was reduced when EGFR was blocked either by the specific antibody Cetuximab or the tyrosine kinase inhibitor erlotinib, whereby reduction was clearly stronger for erlotinib. There was also a difference in the pathways affected. While erlotinib lead to a block of both, MAPK as well as AKT signalling, Cetuximab only affected MAPK. As demonstrated by specific inhibitors (PD98059, AKTIII) EGFR interacts with DSB repair mostly via MAPK pathway. Also for NHEJ activity, there was a substantial increase, when EGFR was activated by EGF as determined for two different reporter cell lines (A549.EJ and H1299.EJ) and, vice versa, a reduction was seen when EGFR signalling was blocked by Cetuximab or erlotinib. There was, however, no difference for the two inhibitors used. This regulation of NHEJ by EGFR was only blocked when ERK was affected by siRNA but not when AKT was knocked down. These data indicate that EGFR modulates DSB repair by regulating NHEJ via MAPK signalling.  相似文献   

13.
Artemis is a recently identified factor involved in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Here, we performed targeted disruption of the Artemis gene (ARTEMIS) in the human pre-B cell line Nalm-6. Unexpectedly, we found that cells lacking Artemis exhibit increased sensitivity to low doses, but not high doses, of ionizing radiation. We also show that ARTEMIS-deficient cells are hypersensitive to the topoisomerase II inhibitor etoposide, but to a much lesser extent than cells lacking DNA ligase IV, a critical component of NHEJ. Unlike DNA ligase IV-deficient cells, ARTEMIS-deficient cells were not hypersensitive to ICRF-193, a topoisomerase II inhibitor that does not stabilize topoisomerase II-DNA cleavable complexes. Collectively, our results suggest that Artemis only partially participates in the NHEJ pathway to repair DSBs in human somatic cells.  相似文献   

14.
DNA double-strand breaks (DSBs) are considered the most important type of DNA damage inflicted by ionizing radiation. The molecular mechanisms of DSB repair by nonhomologous end joining (NHEJ) have not been well studied in live mammalian cells, due in part to the lack of suitable chromosomal repair assays. We previously introduced a novel plasmid-based assay to monitor NHEJ of site-directed chromosomal I-SceI breaks. In the current study, we expanded the analysis of chromosomal NHEJ products in murine fibroblasts to focus on the error-prone rejoining of DSBs with noncomplementary ends, which may serve as a model for radiation damage repair. We found that noncomplementary ends were efficiently repaired using microhomologies of 1-2 nucleotides (nt) present in the single-stranded overhangs, thereby keeping repair-associated end degradation to a minimum (2-3 nt). Microhomology-mediated end joining was disrupted by Wortmannin, a known inhibitor of DNA-PKcs. However, Wortmannin did not significantly impair the proficiency of end joining. In contrast to noncomplementary ends, the rejoining of cohesive ends showed only a minor dependence on microhomologies but produced fivefold larger deletions than the repair of noncomplementary ends. Together, these data suggest the presence of several distinct NHEJ mechanisms in live cells, which are characterized by the degree of sequence deletion and microhomology use. Our NHEJ assay should prove a useful system to further elucidate the genetic determinants and molecular mechanisms of site-directed DSBs in living cells.  相似文献   

15.
The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells.  相似文献   

16.
We have previously shown that human cancer cells deficient in DNA mismatch repair (MMR) are resistant to the chemotherapeutic methylating agent temozolomide (TMZ) and can be sensitized by the base excision repair (BER) blocking agent methoxyamine (MX) [21]. To further characterize BER-mediated repair responses to methylating agent-induced DNA damage, we have now evaluated the effect of MX on TMZ-induced DNA single strand breaks (SSB) by alkaline elution and DNA double strand breaks (DSB) by pulsed field gel electrophoresis in SW480 (O6-alkylguanine-DNA-alkyltransferase [AGT]+, MMR wild type) and HCT116 (AGT+, MMR deficient) colon cancer cells. SSB were evident in both cell lines after a 2-h exposure to equitoxic doses of temozolomide. MX significantly increased the number of TMZ-induced DNA-SSB in both cell lines. In contrast to SSB, TMZ-induced DNA-DSB were dependent on MMR status and were time-dependent. Levels of 50 kb double stranded DNA fragments in MMR proficient cells were increased after TMZ alone or in combination with O6-benzylguanine or MX, whereas, in MMR deficient HCT116 cells, only TMZ plus MX produced significant levels of DNA-DSB. Levels of AP endonuclease, XRCC1 and polymerase beta were present in both cell lines and were not significantly altered after MX and TMZ. However, cleavage of a 30-mer double strand substrate by SW480 and HCT116 crude cell extracts was inhibited by MX plus TMZ. Thus, MX potentiation of TMZ cytotoxicity may be explained by the persistence of apurinic/apyrimidinic (AP) sites not further processed due to the presence of MX. Furthermore, in MMR-deficient, TMZ-resistant HCT116 colon cancer cells, MX potentiates TMZ cytotoxicity through formation of large DS-DNA fragmentation and subsequent apoptotic signalling.  相似文献   

17.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

18.
Multiple myeloma (MM) is a hematological malignancy characterized by frequent chromosome abnormalities. However, the molecular basis for this genome instability remains unknown. Since both impaired and hyperactive double strand break (DSB) repair pathways can result in DNA rearrangements, we investigated the functionality of DSB repair in MM cells. Repair kinetics of ionizing-radiation (IR)-induced DSBs was similar in MM and normal control lymphoblastoid cell lines, as revealed by the comet assay. However, four out of seven MM cell lines analyzed exhibited a subset of persistent DSBs, marked by γ-H2AX and Rad51 foci that elicited a prolonged G2/M DNA damage checkpoint activation and hypersensitivity to IR, especially in the presence of checkpoint inhibitors. An analysis of the proteins involved in DSB repair in MM cells revealed upregulation of DNA-PKcs, Artemis and XRCC4, that participate in non-homologous end joining (NHEJ), and Rad51, involved in homologous recombination (HR). Accordingly, activity of both NHEJ and HR were elevated in MM cells compared to controls, as determined by in vivo functional assays. Interestingly, levels of proteins involved in a highly mutagenic, translocation-promoting, alternative NHEJ subpathway (Alt-NHEJ) were also increased in all MM cell lines, with the Alt-NHEJ protein DNA ligase IIIα, also overexpressed in several plasma cell samples isolated from MM patients. Overactivation of the Alt-NHEJ pathway was revealed in MM cells by larger deletions and higher sequence microhomology at repair junctions, which were reduced by chemical inhibition of the pathway. Taken together, our results uncover a deregulated DSB repair in MM that might underlie the characteristic genome instability of the disease, and could be therapeutically exploited.  相似文献   

19.
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.  相似文献   

20.
Wang M  Wu W  Wu W  Rosidi B  Zhang L  Wang H  Iliakis G 《Nucleic acids research》2006,34(21):6170-6182
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号