首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NuCOTN 33B, a Bt transgenic variety of upland cotton (Gossypium hirsutum L.) expressing the insecticidal protein Cry1Ac from Bacillus thuringiensis Berliner sp. kurstaki, was evaluated for resistance to Helicoverpa armigera (Hübner) during 1998-2000 in northern China. The results indicated that there was no significant difference in egg densities between NuCOTN 33B and three nontransgenic varieties (DP5415, Zhongmian12, and Shiyuan321) during the season, although the survival of larvae on NuCOTN 33B seemed significantly reduced. High larval densities observed on non-Bt cotton appeared in great contrast to the low larval populations observed on NuCOTN 33B plants during the seasons. In an environment without insecticide sprays, the annual ginned cotton yields in NuCOTN 33B plots, ranging from 1391.17 to 1511.35 kg/ha, were significantly higher than those in non-Bt cotton (340.34-359.58 kg/ha). These high levels of field efficacy for NuCOTN 33B against H. armigera in northern China may pave the way for reduced pesticide applications and an expansion of alternative pest-control strategies.  相似文献   

2.
Genetically modified cotton, Gossypium hirsutum L., cultivars ('Bollgard') that produce crystalline proteins from Bacillus thuringiensis (Berliner) are valuable tools for managing lepidopteran insect pests in the United States. However, high numbers of bollworm, Helicoverpa zea (Boddie), larvae have been observed feeding in white flowers of these cultivars. Fresh tissue bioassays were conducted to investigate bollworm survival on Bollgard and 'Bollgard II' cottons. Bollworm survival was higher on square and flower anthers than on other floral structures on 'Deltapine 5415' (conventional cotton) and 'NuCOTN 33B' (Bollgard). Bollworm survival at 72 h was higher on all floral structures from Deltapine 5415 than on corresponding structures from NuCOTN 33B. ELISA tests indicated that CryIA(c) expression varied among plant parts; however, bollworm survival did not correlate with protein expression levels. Trends in bollworm survival on Bollgard II were similar to those on Bollgard and conventional cotton; however, survival was lower on all structures of Bollgard II than on corresponding structures of Bollgard and conventional cotton. These data support field observations of bollworm injury to white flowers and small bolls and provide a better understanding of larval behavior on Bollgard cotton.  相似文献   

3.
Transgenic Bt cotton, engineered to continuously produce activated delta-endotoxins of the soil bacteria Bacillus thuringiensis, holds great promise in controlling Helicoverpa armigera and other lepidopteran pests. However, it also may impact the invertebrate community, which needs to be clarified. The effects of Bt cotton on two nontarget insects, Aphis gossypii and Orius sauteri, were assessed under semifield and laboratory conditions. Mean total duration of nymphal stages of A. gossypii was shorter (5.9 versus 6.3 d), and rm was higher (0.418 versus 0.394) on conventional Simian 3 (the most frequently planted non-Bt cotton in northern China) than on Bt transgenic NuCOTN 33B (the first Bt cotton commercially planted in China). Mean duration of fourth-instar O. sauteri was significantly longer on transgenic GK-12 (3.7 d) than on NuCOTN 33B (3.2 d), but no different from Simian 3. Mean total mortality was significantly lower on Simian 3 (3.7%) than on GK-12 (14.8%). During the fourth instar, the predator consumed a significantly higher number of prey on Simian 3 (202.3 prey) than on NuCOTN 33B (159.0), whereas the mean total number of A. gossypii prey consumed during the nymphal stage was significantly higher on Simian 3 (336.8 prey) and GK-12 (330.3 prey) than on NuCOTN 33B (275.7). No detrimental effects were detected on development (nymphs, adults, and progeny eggs), fecundity, longevity, and egg viability of O. sauteri on Bt cotton aphids compared with non-Bt cotton aphids. These results suggest that Bt cotton cultivars GK-12 and NuCOTN 33B have no direct effect on nontargets A. gossypii and O. sauteri. Germplasm divergence may account for the negative effects observed on A. gossypii and O. sauteri when reared on NuCOTN 33B or NuCOTN 33B-fed aphids. The biological meanings of the small difference observed between GK-12 and Simian 3 on survival of O. sauteri will require close monitoring over longer time periods.  相似文献   

4.
Tri-trophic impacts of transgenic Bacillus thuringiensis (Bt) cotton GK12 and NuCOTN 99B were studied using a predator, the great lacewing Chrysopa pallens (Rambur), and its prey, the cotton aphid Aphis gossypii Glover, in laboratory feeding experiments. The parental nontransgenic cotton cultivar of GK12 was used as control. The predator was fed with uniform (aphids from a single cultivar) or mixed prey (aphids from the three cotton cultivars provided on alternate days). Mortality and development of the immature stages, pupal body mass, adult sex ratio, fecundity, and egg viability of C. pallens were measured. When fed GK12-originated aphid prey, pupal body mass of C. pallens was significantly higher than that of the control, more females emerged, and these females laid significantly more eggs. Other parameters were not impacted. Females emerging from larvae maintained on NuCOTN 99B-originated prey laid fewer eggs than those maintained on GK12. Other measurements did not differ significantly between the two Bt cotton cultivars. Compared with the control, mixed feeding significantly prolonged pupal development time and increased pupal body mass and percentage of females but did not affect other parameters. These results indicate that C. pallens is sensitive to aphid prey from different cotton cultivars. Transgenic Bt cotton GK12-originated aphid prey has no adverse impact on survival, development, and fecundity of C. pallens. Between the two Bt cotton cultivars, NuCOTN 99B-originated aphid prey provided to C. pallens in the larval stage may lower female fecundity. Mixed feeding of C. pallens with the two Bt cotton-originated prey and non-Bt prey may have some adverse impacts on pupal development.  相似文献   

5.
The Indian meal moth, Plodia interpunctella (Hübner), and Angoumois grain moth, Sitotroga cerealella (Olivier), are two globally distributed stored-grain pests. Laboratory experiments were conducted to examine the impact that corn (Zea mays L.) kernels (i.e., grain) of some Bacillus thuringiensis Berliner (Bt) corn hybrids containing CrylAb Bt delta-endotoxin have on life history attributes of Indian meal moth and Angoumois grain moth. Stored grain is at risk to damage from Indian meal moth and Angoumois grain moth; therefore, Bt corn may provide a means of protecting this commodity from damage. Thus, the objective of this research was to quantify the effects of transgenic corn seed containing CrylAb delta-endotoxin on Indian meal moth and Angoumois grain moth survival, fecundity, and duration of development. Experiments with Bt grain, non-Bt isolines, and non-Bt grain were conducted in environmental chambers at 27 +/- 1 degrees C and > or = 60% RH in continuous dark. Fifty eggs were placed in ventilated pint jars containing 170 g of cracked or whole corn for the Indian meal moth and Angoumois grain moth, respectively. Emergence and fecundity were observed for 5 wk. Emergence and fecundity of Indian meal moth and emergence of Angoumois grain moth were significantly lower for individuals reared on P33V08 and N6800Bt, MON 810 and Bt-11 transformed hybrids, respectively, than on their non-Bt transformed isolines. Longer developmental times were observed for Indian meal moth reared on P33V08 and N6800Bt than their non-Bt-transformed isolines. These results indicate that MON 810 and Bt-11 CrylAb delta-endotoxin-containing kernels reduce laboratory populations of Indian meal moth and Angoumois grain moth. Thus, storing Bt-transformed grain is a management tactic that warrants bin scale testing and may effectively reduce Indian meal moth and Angoumois grain moth populations in grain without application of synthetic chemicals or pesticides.  相似文献   

6.
Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed.  相似文献   

7.
Transgenic varieties of field corn that express the CrylAb B. thuringiensis (Bt) toxin in ear tissue present the potential of reducing ear feeding by the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae), and for reducing the size of populations of the insect infesting other host crops. Life history parameters of H. zea feeding on ears of conventional and Bt field corn varieties were measured in field plots in eastern North Carolina in 1997 and 1998. Transformation events investigated were Mon-810 and Bt-11. Bt corn was found to cause a steady mortality of larvae during development, but permitted approximately 15-40% survival to the prepupal stage compared with non-Bt corn. Mortality of prepupae and pupae from Bt corn was also higher than from non-Bt corn, reducing overall adult production by 65-95%. The larvae that did survive grew more slowly on Bt than on non-Bt corn, and produced pupae that weighed 33% less. Pupation and adult eclosion were delayed by 6-10 d by feeding on Bt corn ears. Corn varieties expressing Bt in ear tissue have the potential to reduce H. zea ear feeding by up to 80%, and the potential to reduce populations emerging from ear-stage corn fields to infest cotton, soybean and other crops by around 75%. To have a measurable effect on area-wide populations, Bt corn varieties would need to be planted in large proportions of corn fields. Extensive planting of varieties such as those tested here, having only moderate effects on H. zea, would raise concerns about rapid evolution of resistance.  相似文献   

8.
Field tests were conducted in northeastern Louisiana to determine the effects of infestations by Helicoverpa zea (Boddie) on cotton bolls of varying ages. First instars were caged on bolls of nontransgenic ('Deltapine 5415') or transgenic Bacillus thuringiensis Berliner variety kurstaki (Bt) ('NuCOTN 33B') cotton from 29 June to 11 August during 1997 and 1998. Deltapine 5415 bolls that accumulated 179 (7.2 d), 281 (11.2 d), and 253 (10.1 d) heat units beyond anthesis were safe from bollworm-induced abscission at 72 h after infestation, 7 d after infestation, and at the time of harvest, respectively. NuCOTN 33B bolls that accumulated 157 (6.3 d), 185 (7.4 d), and 180 (7.2 d) heat units beyond anthesis were safe from bollworm-induced abscission at 72 h after infestation, 7 d after infestation, and at the time of harvest, respectively. Bollworm larvae reduced seedcotton weights of Deltapine 5415 bolls that accumulated between 58.5 (2.3 d) and 350.5 (14.0 d) heat units beyond anthesis. Seedcotton weights of NuCOTN 33B bolls that accumulated between 0 and 281 (11.2 d) heat units beyond anthesis were reduced by bollworm injury. Deltapine 5415 and NuCOTN 33B bolls that accumulated 426.5 (17.1 d) and 299.5 (12.0 d) heat units beyond anthesis, respectively, before infestation were not injured by first-instar bollworm larvae. These data provide information about late-season insecticide termination strategies for bollworms on nontransgenic and transgenic Bt-cotton. This, in turn, will help pest managers determine when insecticides are no longer economical during the late season.  相似文献   

9.
A seed blend refuge has been implemented in the U.S. Corn Belt for Bt maize resistance management. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a target pest of Bt maize in the Americas. The larvae of this pest are mobile, which may affect the efficacy of seed blend refuges. In this study, field and greenhouse trials were conducted to determine the performance of Bt-susceptible (aabb) and -heterozygous dual-gene-resistant (AaBb) genotypes of S. frugiperda in seed blends of non-Bt and pyramided Bt maize. Three field trials evaluated larval survival, larval growth, and plant injury with aabb in seed blends of Bt maize expressing Cry1A.105/Cry2Ab2/Vip3A with 0–30% non-Bt seeds. Greenhouse tests investigated the performance of aabb and AaBb in seed blends of Cry1A.105/Cry2Ab2 with 0–30% non-Bt seeds. In pure non-Bt maize plots, after 9–13 d of neonates being released on the plants, 0.39 and 0.65 larvae/plant survived with leaf injury ratings of 4.7 and 5.9 (Davis's 1–9 scale) in the field and greenhouse, respectively. In contrast, live larvae and plant injury were virtually not observed on Bt plants across all planting patterns. Larval occurrence and plant injury by aabb on non-Bt plants were similar between seed blends and pure non-Bt plantings, suggesting that the blended refuges could provide an equivalent susceptible population as structured refuge under the test conditions. In the greenhouse, the two insect genotypes in seed blends performed similarly, indicating that the seed blends did not provide more favorable conditions for AaBb over aabb. The information generated from this study should be useful in managing S. frugiperda and evaluating if send blends could be suitable refuge options for Bt resistance management in the regions where the insect is a primary target pest.  相似文献   

10.
Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field conditions, due to expression of the CpTI gene, was not demonstrated.  相似文献   

11.
Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.  相似文献   

12.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), or fall armyworm, is an important agricultural pest of several crops in the Western Hemisphere, including cotton (Gossypium L.). Two morphologically identical host strains of fall armyworm exist that differ in plant host use and habitat distribution. The corn-strain is a primary pest of corn, Zea mays L., whereas the rice-strain is the majority population infesting rice (Oryza spp.) and turfgrass (Cynodon spp.). With the increased use of Bacillus thuringiensis (Bt) toxin-expressing cotton varieties and the necessity of ensuring adequate refuge areas to prevent the spread of Bt toxin resistance, it is crucial to identify the alternative plant hosts available for the fall armyworm population infesting cotton. Stable isotope analysis combined with the molecular analysis of strain-specific markers was used to investigate whether one or both strains routinely develop on cotton grown in the Mississippi delta. We found that the majority of fall armyworm adults present during the early cotton growing season arose from C4 plants (e.g., corn and sorghum, Sorghum vulgare Pers.) and that the only strain likely to be developing on cotton (a C3 plant) in substantial numbers was the corn-strain. The population distribution patterns observed were consistent with corn providing an important refuge for the fall armyworm strain infesting cotton and suggested that late season populations in the Mississippi delta may be migrants from more northern corn areas.  相似文献   

13.
Bacillus thuringiensis (Bt) corn, Zea mays L., is highly efficient against the corn borer Sesamia nonagrioides (Lefèbvre) (Lepidoptera: Noctuidae) when the larvae feed only on the transgenic plants. However, when they feed on Bt leaves during only part of their development, thus ingesting sublethal amounts of Bt toxins, some larvae survive. A previous study reported a prolonged development and precocious diapause induction in larvae fed on a diet with sublethal amounts of Cry1Ab protein. To determine whether these effects were accompanied by a modification of the hormonal balance, S. nonagrioides larvae were fed on sublethal amounts of Bt protein provided in Bt leaves or in the diet. The larvae that survived had higher levels of juvenile hormone (JH), whereas their level of ecdysteroids did not increase sufficiently to allow pupation, leading to a longer larval development and more larval molts. This response may be considered a defense mechanism that allows some larvae to survive toxin ingestion; it is similar the response to insecticidal toxins or viruses observed in other larvae. Changes in the hormone levels in diapausing larvae were undetectable, probably because these changes were masked by the higher level of JH in the hemolymph of diapausing larvae and because of lack of ecdysteroid titer increase, a phenomenon that is usually observed a few days before pupation in nondiapausing larvae. These results should be taken into account in the establishment of non-Bt refuges to prevent development of Bt-resistance in S. non-agrioides populations.  相似文献   

14.
The incubation period of Spodoptera exigua (Hübner) was not influenced by the host plant, whereas larval development time and pupal period were affected. Larval development time was longest on shallot and lady's finger, followed by cabbage and long bean. Larvae did not develop beyond the first instar when fed on chilli. The pupal period was longer on lady's finger than on cabbage, shallot and long bean. Overall, adult longevity was not influenced by the host plant but there was a difference between female and male longevity among the host plants. Survival of S. exigua was affected by the host plant at the larval stage. The number of larval instars varied between 5 and 8 within and between the studied host plants. Long bean was found to be the most suitable host plant and provide the best food quality for S. exigua compared to the other host plants, as it allowed faster development, fewer larval instars and a higher survival rate.  相似文献   

15.
This study assessed the efficacy of two different genetic events, event Bt 11 (CrylAb) and event CBH351 (Cry 9C), in Bt corn against two instar classes of the stalk borer Papaipema nebris across three different plant stages (V1, V3, and V5) of corn, Zea mays. Class A includes instars 1 and 2, and class B includes instars 3 and 4. Stalk borer response and development over time were measured, and the data from 1999 and 2000 show that the Bt corn does have some effect on the feeding and development of P. nebris. Injury to the corn plant was reduced, although not eliminated. Stalk borer larvae caused significantly (P = 0.0001) more injury to the non-Bt plants than to the Bt plants over time. Growth and development of the larvae were slowed and mortality was higher for Bt corn than for non-Bt corn. These data suggest that planting Bt corn may benefit growers by reducing, but not eliminating, stalk borer infestations and subsequent plant injury.  相似文献   

16.
转Bt基因棉花及其受体品种主要挥发性物质的测定   总被引:2,自引:0,他引:2  
张永军 《生态学报》2001,21(12):2051-2056
应用顶空进样气质联机系统(Headspace-GC-MS)测定了转Bt基因棉花及其对照亲本主要挥发性物质。结果表明棉花营养器官和繁殖器官的主要挥发性物质的差异,棉花植株现蕾期前,叶片中挥发性物质以α-蒎烯为主,而现蕾后,蕾、花和铃中主要以β-月桂烯为主。研究初步发现,外源Bt杀虫蛋白表达对棉花自身主要挥发性物质的合成不会造成不利影响。  相似文献   

17.
Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), feeding bioassays were conducted on young and mature turfgrass species to determine their potential resistance. Measures of resistance included larval weight, survival rate, instar development, pupal weight, duration of pupation, and days to pupation and adult emergence. Black cutworm reared on Poa pratensis 'Midnight', Poa arachnigera 'Tejas', and Poa pratensis X Poa arachnigera 'Reveille' exhibited slower development, lower weight, and higher overall mortality than those fed upon other turfgrasses tested. Larvae reared on Reveille did not survive to pupation and all died within 14 d. Black cutworm larvae reared on Midnight died within 17 d in trial 1 but attained pupation in trial 2. However, development of black cutworm larvae was slower on Poa pratensis Midnight compared with other susceptible turfgrass species such as Agrostis stolonifera 'Penncross', Poa annua ('DW194', 'Q98-4-6', and 'Q98-6-18'), Lolium perenne, and Poa supina 'Supranova'. Generally, larval performance on young plant tissues was better than on mature plant tissues. Larvae reared on P. pratensis 'Midnight' exhibited the most distinctive difference on young versus mature plant tissue. These results suggest that plant age may play an important role in turfgrass susceptibility and resistance.  相似文献   

18.
19.
This study was conducted to determine the effects of Bt cotton leaves (Bollgard II), non-Bt cotton leaves, and a mixture of Bt+non-Bt cotton leaves on larval orientation behavior, survival and development of Trichoplusia ni in the laboratory. Results indicate that in a no-choice test, more first and fifth instars remained on Bt leaves than the third instars. All larvae that remained on the leaves gradually moved to leaf edge. In the choice between a Bt and a non-Bt leaf, more first instars moved to non-Bt leaves, whereas the third and fifth instars did not show significant difference in the first 8 h, but eventually more moved to non-Bt leaves. More first instars fed non-Bt leaves than third instars and fifth instars. When larvae fed Bt leaves, 100% of first instars, 92.7% of third instars and 51.1% of fifth instars died in 108 h. Once larvae pupated, >90% developed to adults. First and third instars that fed Bt leaves developed slower but their pupae developed faster than those on Bt+non-Bt leaves, whereas fifth instars developed similar on the three types of leaves. First and third instars that fed Bt+non-Bt leaves resulted in less heavy pupae than those fed non-Bt leaves; whereas the fifth instars that survived on Bt leaves produced lighter pupae.  相似文献   

20.
Six cabbage (Brassica oleracea var. capitata) varieties with different levels of resistance to Mamestra brassicae (Lepidoptera: Noctuidae) were investigated in order to assess whether antibiosis and antixenosis mechanisms are involved in the resistance to this pest or not. Four experiments were conducted to determine the effect of variety and plant ontogeny on larval behaviour, adult oviposition and leaf damages in non‐choice and choice tests. Larval survival, time to development and larval weights differed depending on the varieties and plant stages that we tested. At the pre‐head stage, larval mortality was higher, larvae died faster, time to pupation was shorter, pupae were lighter and the percentage of viable pupae and growth index (GI) values were lower than larvae reared from plants at the head stage. The commercial hybrid ‘Corazón de buey’ and the local variety named ‘BRS0535’ exhibited antibiosis to M. brassicae as they reduced its survival and growth and delayed its development time. In addition, these varieties were the most resistant after artificial infestation in terms of head foliage consumption and number of larvae per plant. Oviposition tests demonstrated that resistance found in ‘Corazón de buey’ and BRS0535 could be also based on antixenosis mechanisms as they resulted in fewer egg batches on plants, whereas BRS0402 could be classified as resistant because M. brassicae larvae showed less preference for it. Thus, resistance to M. brassicae found in cabbage crops may be due to the joint action of several factors involving antibiosis and antixenosis. We found significant differences in the resistance of BRS0535 depending on the plant ontogeny as it loses its resistance while developing. Further studies are required to identify the mechanism of antibiotic resistance which is present in this variety at the pre‐head stage and the changes that occur in plant defence as it grows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号