共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ornithine decarboxylase activity was inhibited by the antizyme inhibitor protein in extracts from C6-2B rat glioma cells. Antizyme activity in C6-2B cells was increased 3- to 10-fold by micromolar concentrations of putrescine, spermidine and spermine. The calcium chelator EGTA (pCa 6.4) inhibited basal and polyamine-stimulated antizyme activity, and this inhibition was prevented by concurrent incubation with calcium, but not with magnesium. EGTA appeared to block antizyme synthesis, because the half-life values of antizyme activity in the presence of EGTA or cycloheximide were similar (121-143 min). Also, calcium readdition rapidly reversed EGTA inhibition of antizyme activity by a mechanism which could be blocked by cycloheximide. The ability of EGTA to inhibit spermidine-stimulated antizyme activity was not due to reduced spermidine uptake, because EGTA actually stimulated [3H]spermidine accumulation in the trichloroacetic acid-soluble fraction of C6-2B cells after 3 h. 相似文献
3.
4.
Yuan Q Ray RM Viar MJ Johnson LR 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(1):G130-G138
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein. 相似文献
5.
A good correlation was observed between the reciprocal of the half-life of ornithine decarboxylase (ODC) activity in the presence of cycloheximide and the relative amount of ODC-antizyme complex to total ODC (free ODC plus complexed ODC) activity in HTC cells examined at various times after cell dilution or change of medium. Pretreatment of cells with putrescine increased the relative amount of ODC-antizyme complex and decreased the half-life of ODC decay. These results suggested that antizyme plays a key role in ODC degradation. 相似文献
6.
7.
Y Murakami S Matsufuji Y Miyazaki S Hayashi 《The Journal of biological chemistry》1992,267(19):13138-13141
The degradation of ornithine decarboxylase (ODC) is stimulated by polyamines in a protein synthesis-dependent manner. It has been suggested that antizyme, an ODC-inhibiting protein induced by polyamines, is involved in the process of polyamine-stimulated ODC decay. In this study, we investigated the direct effect of antizyme on ODC decay in hepatoma tissue culture (HTC) cells. A truncated rat antizyme cDNA, Z1, was inserted into an expression vector at a site under the control of a glucocorticoid-inducible promoter and transfected into HTC cells. In the transfected cells dexamethasone increased the amount of Z1 mRNA and induced active antizyme in the absence of exogenous polyamines. When dexamethasone was added to cells with a high level of ODC, rapid decays of ODC activity and protein were elicited after a lag time. Cycloheximide abolished the effect of dexamethasone. These effects of dexamethasone were not observed in control HTC cells transfected with the chloramphenicol acetyltransferase gene. This study indicated that, once induced, antizyme stimulated ODC degradation independently of polyamines and strongly supported our previous hypothesis that the ODC decay-accelerating action of polyamines is mediated by antizyme. 相似文献
8.
9.
Regulation of ornithine decarboxylase by antizymes and antizyme inhibitor in zebrafish (Danio rerio)
The structure of the complex between cytochrome c (CYC) and the cytochrome bc(1) complex (QCR) from yeast crystallized with an antibody fragment has been recently determined at 2.97 A resolution [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2800]. CYC binds to subunit cytochrome c(1) of the enzyme stabilized by hydrophobic interactions surrounding the heme crevices creating a small, compact contact site. A central cation-pi interaction is an important and conserved feature of CYC binding. Peripheral patches with highly conserved complementary charges further stabilize the enzyme-substrate complex by long-range electrostatic forces and may affect the orientation of the substrate. Size and characteristics of the contact site are optimal for a transient electron transfer complex. Kinetic data show a bell-shaped ionic strength dependence of the cytochrome c reduction with a maximum activity near physiological ionic strength. The dependence is less pronounced in yeast compared to horse heart CYC indicating less impact of electrostatic interactions in the yeast system. Interestingly, a local QCR activity minimum is found for both substrates at 120-140 mM ionic strength. The architecture of the complex results in close distance of both c-type heme groups allowing the rapid reduction of cytochrome c by QCR via direct heme-to-heme electron transfer. Remarkably, CYC binds only to one of the two possible binding sites of the homodimeric complex and binding appears to be coordinated with the presence of ubiquinone at the Q(i) site. Regulatory aspects of CYC reduction are discussed. 相似文献
10.
Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC(50): 0.20 μM) similar to that of AZ-95-228 (IC(50): 0.16 μM), even though a large segment spanning residues 177-228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC(50) values of 0.43 and 0.37 μM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC(50) values comparable to that of AZ_WT and formed AZ-ODC complexes with K(d,AZ-ODC) values of 1.5, 5.3 and 5.6 μM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function. 相似文献
11.
12.
Developmental and differential expression of the ornithine decarboxylase gene in rodent testis 总被引:1,自引:0,他引:1
A A Alcivar L E Hake P Mali A Kaipia M Parvinen N B Hecht 《Biology of reproduction》1989,41(6):1133-1142
13.
14.
Injection of norepinephrine (NE) at a dose of 10 micrograms per testis caused the testis refractory in terms of ornithine decarboxylase (ODC) activity at 24 h. This desensitization was found to be both time and dose dependent. Injection with follicle stimulating hormone, luteinizing hormone, prostaglandin F2 alpha, cyclic AMP or epinephrine to norepinephrine desensitized testis caused stimulation of ODC activity. This indicates that the refractoriness caused by norepinephrine is specific to this agent alone. 相似文献
15.
Grzmil P Burfeind C Preuss T Dixkens C Wolf S Engel W Burfeind P 《Cytogenetic and genome research》2007,119(1-2):74-82
Genes reported to be crucial for spermatogenesis are often exclusively expressed in the testis. We have identified a novel male germ cell-specific expressed gene named peroxisomal testis specific 1 (Pxt1) with expression starting at the spermatocyte stage during mouse spermatogenesis. The putative amino acid sequence encoded by the cDNA of the Pxt1 gene contains a conserved Asn-His-Leu (NHL)-motif at its C-terminal end, which is characteristic for peroxisomal proteins. Pxt1-EGFP fusion protein is co-localized with known peroxisomal marker proteins in transfected NIH3T3 cells. In addition, we could demonstrate that the peroxisomal targeting signal NHL is functional and responsible for the correct subcellular localization of the Pxt1-EGFP fusion protein. In male germ cells peroxisomes were reported only in spermatogonia. The Pxt1 gene is so far the first gene coding for a putative peroxisomal protein which is expressed in later steps of spermatogenesis, namely in pachytene spermatocytes. 相似文献
16.
Yamanaka M Koga M Tanaka H Nakamura Y Ohta H Yomogida K Tsuchida J Iguchi N Nojima H Nozaki M Matsumiya K Okuyama A Toshimori K Nishimune Y 《Biology of reproduction》2000,62(6):1694-1701
We have isolated a cDNA clone specifically expressed in spermiogenesis from a subtracted cDNA library of mouse testis. The cDNA consisted of 1392 nucleotides and had an open reading frame of 873 nucleotides encoding a protein of 291 amino acid residues. Computer-mediated homology search revealed that the nucleotide sequence was unique but the deduced amino acid sequence had similarity to mouse phosphatidylcholine transfer protein (PCTP). We named this newly isolated gene PCTP-like protein. Northern blot analysis revealed a 1.4-kilobase mRNA expressed in the testis, kidney, liver, and intestine with the highest level in the testis. Messenger RNA expression in the testis was detected first on Day 23 in postnatal development and then increased up to adulthood. The protein, having a molecular weight of approximately 40 000, was encoded by the mRNA and was detected at the tail of the elongated spermatids and sperm by immunohistochemical staining. 相似文献
17.
Intratesticular injection of prostaglandin E2(PGE2) and F2α (PGF2α) caused stimulation of ornithine decarboxylase (ODC) activity in the testis of immature rats. PGE2 at a dose of 10 μg per testis was maximally effective 2 hours after the injection. Dibutyryl cyclic AMP (cAMP) and 1 methyl, 3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor, also stimulated ODC activity. Simultaneous injection of PGE2 and FSH or LH caused additional stimulation of ODC activity. Similarly injection of PGE2 in addition to cAMP or MIX also caused increased stimulation of ODC. Indomethacin (IM, 60 μg/testis) inhibited LH, FSH or cAMP induced ODC activity. However, IM at the same dose inhibited the synthesis of total proteins. These results suggest that PGE2 and PGF2α stimulate the activity of ODC. The action of prostaglandins may be independent of the action of gonadotropic hormones. cAMP appears to mediate the action of prostaglandins in the testis of rat. 相似文献
18.
Intratesticular injection of epinephrine and norepinephrine caused stimulation of ornithine decarboxylase (ODC) activity in the testis of immature rat. The effect of epinephrine was time and dose dependant. The minimal effective dose for epinephrine was found to be 100 pg and optimal stimulation was observed with 500 ng of the drug. Maximal stimulation of ODC occurred at 2 h after the treatment and reduced significantly at 4 h reaching to control levels at 6 h. Simultaneous injection of epinephrine with dibutyryl cAMP, luteinizing hormone, follicle stimulating hormone or prostaglandin E2 caused additional stimulation of the enzyme activity. Injection of epinephrine to norepinephrine treated animals caused additional effect. Both epinephrine and norepinephrine were found to stimulate the enzyme activity in leydig cell and seminiferous tubule fractions. These results suggest that catecholamines are also involved in the regulation of ODC activity in the testis of rat. 相似文献
19.
20.
Pantazaki A.A. Anagnostopoulos C.G. Lioliou E.E. Kyriakidis D.A. 《Molecular and cellular biochemistry》1999,195(1-2):55-64
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis was highly purified from the thermophilic bacterium Thermus thermophilus. The enzyme preparation showed a single band on SDS-polyacrylamide gel electrophoresis, a pH optimum of 7.5 and a temperature optimum at 60°C. The native enzyme which is phosphorylated could, upon treatment with alkaline phosphatase, lose all activity. The inactive form could be reversibly activated by nucleotides in the order of NTP>NDP>NMP. When physiological polyamines were added to the purified enzyme in vitro, spermine or spermidine activated ODC by 140 or 40%, respectively, while putrescine caused a small inhibition. The basic amino acids lysine and arginine were competitive inhibitors of ODC, while histidine did not affect the enzyme activity. Among the phosphoamino acids tested, phosphoserine was the most effective activator of purified ODC. Polyamines added at high concentration to the medium resulted in a delay or in a complete inhibition of the growth of T. thermophilus, and in a decrease of the specific activity of ornithine decarboxylase. The decrease of ODC activity resulted from the appearance of a non-competitive inhibitor of ODC, the antizyme (Az). The T. thermophilus antizyme was purified by an ODC-Sepharose affinity column chromatography, as well as by immunoprecipitation using antibodies raised against the E. coli antizyme. The antizyme of E. coli inhibited the ODC of T. thermophilus, and vice versa. The fragment of amino acids 56-292 of the E. coli antizyme, produced as a fusion protein of glutathione S-transferase, did not inhibit the ODC of E. coli or T. thermophilus. 相似文献