共查询到20条相似文献,搜索用时 0 毫秒
1.
Long Z Lee JA Okamoto T Nimura N Imai K Homma H 《Biochemical and biophysical research communications》2000,276(3):1143-1147
d-Aspartate (d-Asp) is found in prolactin (PRL)-containing cells of the rat anterior pituitary gland [Lee et al., Brain Res. 838, 193-199, 1999]. In order to determine whether d-Asp is actually produced by the anterior pituitary gland and whether it plays a physiological role in PRL function, a PRL-secreting clonal strain of rat pituitary tumor cells (GH(3)) was employed in this study. HPLC analysis and immunocytochemical staining detected the presence and synthesis of d-Asp in the cytoplasm of these cells. In addition, thyrotropin-releasing hormone-stimulated PRL secretion was increased in a dose-dependent fashion by d-Asp from these cells. These results suggest that the anterior pituitary gland synthesizes d-Asp and that d-Asp acts as a messenger in this gland. 相似文献
2.
Berit M. Mortensen Hanne W. Lund Greg Jablonski Ruth H. Paulssen Jan O. Gordeladze 《Bioscience reports》1995,15(3):135-150
In normal rats treated with 1,25(OH)2D3 or 24,25(OH)2D3, serum Ca2+, ALP, PRL and GH are significantly altered. In order to study the primary effect of vitamin D3 analogues on target organ function, rat UMR 106 osteosarcoma and GH3 pituitary adenoma cells in monolayer culture were exposed accordingly.Surprisingly, prolonged exposure of these cell lines to physiological levels of either 1,25(OH)2D3 or 24,25(OH)2D3 did not significantly affect the secretory parameters (ALP, PRL or GH) tested. However, 1,25(OH)2D3 exposure significantly reduced PTH- and Gpp(NH)p-elicited AC as well as Gpp(NH)p-stimulated PLC activities in the UMR 106 cells. These changes were accompanied by an increase and decrease in the membrane contents of the G-protein subunits G36 and Gq/11, respectively. In contrast, 24,25(OH)2D3 remained without significant biological effect on these signalling systems despite concomitantly augmented levels of G36. TRH- and Gpp(NH)p-elicited PLC activities in the GH3 cells were significantly reduced by 1,25(OH)2D3 with a concurrent reduction in cellular amounts of Gq/11, however, 24,25(OH)2D3 did not significantly alter any signalling systems nor G-proteins analyzed.It is concluded that the osteoblastic and pituitary cell secretion of ALP, PRL and GH remain unaffected by the presence of 1,25(OH)2D3 and 24,25(OH)2D3, despite distinct alterations in components of G-protein mediated signalling pathways. Hence, other factors like ambient Ca2+ may be responsible for the perturbed secretory patterns of ALP and PRL seen in vitamin D3 treated rats.Abbreviations AC
adenylate cyclase
- ALP
alkaline phosphatase
- BGP
osteocalcin
- BSA
bovine serum albumin
- DA
dopamine
- DAG
diacylglycerol
- GH
growth hormone
- GHRH
growth hormone releasing hormone
- Gpp(NH)p
guanosine 5-[-imido]triphosphate
- G-protein
guanine nucleotide-binding regulatory protein
- Gs etc.
Gs protein -subunit
- IP3
inositol 1,4,5 trisphosphate
- OAF
osteoclast activating factor
- PGE2
prostaglandin E2
- PKA & PKC
protein kinase A & C
- PLC
phospholipase C
- PRL
prolactin
- PTH
parathyroid hormone
- SRIF
somatostatin
- TRH
thyrotropin releasing hormone
- VIP
vasoactive intestinal peptide
- 25(OH)D3
25 hydroxy vitamin D3
- 1,25(OH)2D3
1·25 dihydroxy vitamin D3
- 24,25(OH)2D3
24,25 dihydroxy vitamin D3 相似文献
3.
Eyvind J. Paulssen Ruth H. Paulssen Kaare M. Gautvik Jan O. Gordeladze 《Cellular signalling》1992,4(6):747-755
We have investigated the possibility that adenylyl cyclase (AC) activity and membrane protein levels of the -subunits of the stimulatory and inhibitory G-proteins of AC (Gs and Gi−2) in cultured prolactin-producing rat pituitary adenoma cells (GH3 cells) are modulated by phospholipase C (PLC)-generated second messengers. Pretreatment of cells (6–48 h) with ionomycin (1 μM) or 1-oleoyl-2-acetylglycerol (OAG; 1μM) showed that ionomycin regulated Gs levels in a time-dependent, biphasic manner; a two-fold increase followed a 40% initial reduction, while OAG lowered Gs levels by more than 50% at all time-points. Gi−2 levels remained unchanged by both pretreatments. OAG, but not ionomycin, increased basal AC activity without increasing enzyme protein levels. Alterations in AC responsiveness to peptide hormones (e.g. thyroliberin and vasoactive intestinal peptide) correlated to membrane Gs protein -subunit content. These results demonstrate the involvement of G-protein translation regulation as one mechanism of ‘cross-talk’ between the PLC- and AC-dependent signalling pathways. 相似文献
4.
Glucocorticosteroids stimulate growth hormone (GH) synthesis and inhibit prolactin (PRL) synthesis and cell growth in cultured GH3 cells, a clonal cell strain derived from a rat pituitary tumour. This model system was used to study the mechanism by which glucocorticosteroids enter target cells. The cellular uptake of [3H]dexamethasone was temperature dependent and was further inhibited by addition of an excess amount of cold dexamethasone. Half maximal uptake was obtained after about 5 min at 37 degrees C. The initial rates of [3H]dexamethasone uptake were a linear function of the extracellular hormone concentration. The uptake of [3H]dexamethasone in intact cells studied at different temperatures resulted in linear Arrhenius plots, with a calculated energy of activation of 91.0 kJ x mole-1 x degree-1. Scatchard analysis of specifically cell bound [3H]dexamethasone at equilibrium (0 degrees C) showed a straight line with a calculated dissociation constant (Kd) of 1.6 x 10(-9) M and a maximal uptake of 180 x 10(-15) mole/mg cell protein. Specific binding of [3H]dexamethasone to cytosol proteins could only be demonstrated at 0 degrees C. These results indicate that [3H]dexamethasone diffuses passively into the cell, and binds to specific receptors in an energy dependent way. 相似文献
5.
Chronic treatment (more than 3 d) of GH3 cells, cloned rat pituitary cells producing prolactin, with 100 nM TRH resulted in a 41% reduction in the rate of cell growth in a medium containing 0.5% fetal bovine serum. These effects of TRH appeared both in the medium containing a higher concentration of serum and in that containing six growth factors, i.e. insulin, transferrin, parathyroid hormone, fibroblast growth factor, triiodothyronine, and multiplication-stimulating activity (MSA) instead of serum. TRH stimulated prolactin production by GH3 cells in a dose-dependent manner both in the serum-supplemented and serum-free media. On the other hand, TRH, at 1 nM, elicited a 130% stimulation in the cellular growth, whereas, at concentrations of more than 10 nM, it inhibited the growth significantly. In the defined culture system, it was demonstrated that TRH stimulated prolactin production in the presence or absence of six growth factors, whereas its inhibitory effects on cellular growth appeared only in the presence of MSA regardless of the presence or absence of the other five factors. Furthermore, it was shown that a dose-dependent stimulatory effect of MSA on the growth of GH3 cells was suppressed by TRH. TRH exhibited only a stimulatory effect on cellular growth in the medium containing the five factors other than MSA. In conclusion, TRH could inhibit cell growth of GH3 in the presence of MSA in the defined medium or MSA-like factor(s) in the serum-supplemented medium. 相似文献
6.
Yukiko Yajima Toshikazu Saito 《In vitro cellular & developmental biology. Plant》1982,18(12):1009-1016
Summary Chronic treatment (more than 3 d) of GH3 cells, cloned rat pituitary cells producing prolactin, with 100 nM TRH resulted in a 41% reduction in the rate of cell growth in a medium containing 0.5% fetal bovine serum. These effects
of TRH appeared both in the medium containing a higher concentration of serum and in that containing six growth factors, i.e.
insulin, transferrin, parathyroid hormone, fibroblast growth factor, triiodothyronine, and multiplication-stimulating activity
(MSA) instead of serum. TRH stimulated prolactin production by GH3 cells in a dose-dependent manner both in the serum-supplemented and serum-free media. On the other hand, TRH, at 1 nM, elicited a 130% stimulation in the cellular growth, whereas, at concentrations of more than 10 nM, it inhibited the growth significantly.
In the defined culture system, it was demonstrated that TRH stimulated prolactin production in the presence or absence of
six growth factors, whereas its inhibitory effects on cellular growth appeared only in the presence of MSA regardless of the
presence or absence of the other five factors. Furthermore, it was shown that a dose-dependent stimulatory effect of MSA on
the growth of GH3 cells was suppressed by TRH. TRH exhibited only a stimulatory effect on cellular growth in the medium containing the five
factors other than MSA. In conclusion, TRH could inhibit cell growth of GH3 in the presence of MSA in the defined medium or MSA-like factor(s) in the serum-supplemented medium. 相似文献
7.
Jan O. Gordeladze Trine Haugen Eivind J. Paulssen Ruth H. Paulssen 《Bioscience reports》1996,16(1):65-74
The presence of the pertussis toxin (PTX) insensitive GTP-binding proteins (G-proteins) Gq and/or G11 has been demonstrated in three different prolactin (PRL) and growth hormone (GH) producing pituitary adenoma cell lines. Immunoblocking of their coupling to hormone receptors indicates that Gq and/or G11 confer throliberin (TRH) responsive phospholipase C (PL-C) activity in these cells. The contention was substantiated by immunoprecipitation analyses snowing that anti Gq/11-sera coprecipitated PL-C activity. In essence, only Gq/11 (but neither Gi2, Gi3 nor Go) seems to mediate the TRH-sensitive PL-C activity, while Go may be coupled to a basal or constitutive PL-C activity. Immunoblocking studies imply that the B-complex also, to some extent, may stimulate GH3 pituitary cell line PL-C activity. Finally, the steady state levels of Gq/11 mRNA and protein were downregulated upon long term exposure of the GH3 cells to TRH (but not to vasoactive intestinal peptide = VIP). 相似文献
8.
Somatostatin lowers the cytosolic free Ca2+ concentration in clonal rat pituitary cells (GH3 cells) 总被引:4,自引:0,他引:4
Changes in the cytosolic free Ca2+ concentration, [Ca2+]i, have been proposed to mediate the regulation of the secretion of pituitary hormones by hypothalamic peptides. Using an intracellularly trapped fluorescent Ca2+ probe, quin2, [Ca2+]i was monitored in GH3 cells. Somatostatin lowers [Ca2+]i in a dose dependent manner from a prestimulatory level of 120 +/- 4 nM (SEM, n = 13) to 78 +/- 9 nM (n = 5) at 10(-7)M; the effect is half maximal at 2 X 10(-9) M somatostatin. The decrease in [Ca2+]i occurs rapidly after somatostatin addition and a lowered steady state [Ca2+]i is maintained for several minutes. Somatostatin does not inhibit the rapid rise in [Ca2+]i elicited by thyrotropin releasing hormone (TRH) and can still cause a decrease in [Ca2+]i in the presence of TRH (10(-7)M). Concomitantly with its action on [Ca2+]i somatostatin causes hyperpolarization of GH3 cells assessed with the fluorescent probe bis-oxonol. The lowering of [Ca2+]i by somatostatin is however not only due to reduced Ca2+ influx through voltage dependent Ca2+ channels, since it persists in the presence of the channel blocker verapamil. These results suggest that somatostatin may exert its inhibitory action on pituitary hormone secretion by decreasing [Ca2+]i. 相似文献
9.
Yan-Nian Jiang Yi-Hung Li Meng-Wei Ke Ting-Yu Tseng Yueh-Bih Tang Mu-Chiou Huang Winston Teng-Kuei Cheng Yu-Ten Ju 《Cancer cell international》2007,7(1):1
Background
Prolactinoma is the most frequent pituitary tumor in humans. The dopamine D2 receptor agonist bromocriptine has been widely used clinically to treat human breast tumor and prolactinoma through inhibition of hyperprolactinemia and induction of tumor cell apoptosis, respectively, but the molecular mechanism of bromocriptine induction of pituitary tumor apoptosis remains unclear. Caveolin-1 is a membrane-anchored protein enriched on caveolae, inverted flask-shaped invaginations on plasma membranes where signal transduction molecules are concentrated. Currently, caveolin-1 is thought to be a negative regulator of cellular proliferation and an enhancer of apoptosis by blocking signal transduction between cell surface membrane receptors and intracellular signaling protein cascades. Rat pituitary adenoma GH3 cells, which express endogenous caveolin-1, exhibit increased apoptosis and shrinkage after exposure to bromocriptine. Hence, the GH3 cell line is an ideal model for studying the molecular action of bromocriptine on prolactinoma. 相似文献10.
Prolactin-deficient variants of GH3 rat pituitary tumor cells: linked expression of prolactin and another hormonally responsive protein in GH3 cells. 总被引:4,自引:2,他引:4 下载免费PDF全文
GH3 cells normally synthesize and secrete two pituitary polypeptide hormones, prolactin and growth hormone. From an ethyl methane sulfonate-mutagenized population, prolactin low-producing variants have been isolated at a frequency near 20%. Intracellular prolactin synthesis in the variants was reduced 40- to 100-fold compared to wild-type cells while growth hormone synthesis varied less than 2-fold. This decrease was paralleled by a decrease in intracellular preprolactin mRNA. Although reduced, prolactin synthesis was still repressible by glucocorticoids. There was a coordinate loss of expression of p21, a thyroid and glucocorticoid hormone-regulated protein, in GH3 cells, whereas the synthesis and regulation of other hormonally responsive proteins were unimpaired in the variants. Since p21 expression was coordinately regained in a high-producing prolactin revertant cell, expression of the two proteins is tightly coupled in GH3 cells. The stability of the low-producing phenotype differed among variants. One (B2) gave rise to revertants at about 20% frequency even after two rounds of subcloning, whereas another (B3) was more stable in that only 1 weak revertant was found in 47 subclones. The reversion frequency of B3 cells was also measured at less than 0.5%. Unmutagenized GH3 cells were phenotypically stable in that no prolactin-deficient variant was found among 57 subclones. Since variants were ony found after ethyl methane sulfonate mutagenesis, the DNA alkylating agent appears to have promoted an epigenetic change in pituitary gene expression. 相似文献
11.
Cytosol prepared in 0.3 M KCl from pituitary GH3 cells, but not from AtT-20 cells contains a receptor-like macromolecule that binds 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) with specificity and high affinity (Kd = 2.9 x 10(-10) M). The GH3 cytosolic binding component sediments at 3.3 S in high-salt sucrose gradients and adsorbs to DNA-cellulose; its elution profile from DNA-cellulose and other biochemical properties are indistinguishable from those of classical 1,25(OH)2D3 hormone receptors. The presence of the 1,25(OH)2D3 receptor in pituitary cells which secrete primarily growth hormone and prolactin (GH3), but not in a line which secretes the 31,000-dalton ACTH precursor and its derived peptides (AtT-20), suggests that 1,25(OH)2D3 may play a regulatory role in specific pituitary cells. 相似文献
12.
Recent studies have implicated that a GTP-binding protein (G-protein) is involved in the coupling of both CCK-8 and muscarinic cholinergic receptors to phosphoinositidase C (PIC) in the human embryonic pituitary cell line, Flow 9000. Pretreatment of these cells with cholera toxin, but not pertussis toxin, inhibited the stimulation of [3H]inositol phosphate production by CCK-8 and acetylcholine. These inhibitory effects of cholera toxin could not be reproduced by treating the cells with the B-subunit of cholera toxin or cAMP-generating agents such as forskolin. These data suggest the presence of a novel Gc protein which is responsible for receptor-PIC coupling in Flow 9000 cells. 相似文献
13.
C S Narayanan J Fujimoto E Geras-Raaka M C Gershengorn 《The Journal of biological chemistry》1992,267(24):17296-17303
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) down-regulates TRH receptor (TRH-R) mRNA (Fujimoto, J., Straub, R.E., and Gershengorn, M.C. (1991) Mol. Endocrinol. 5, 1527-1532), at least in part, by stimulating its degradation (Fujimoto, J., Narayanan, C.S., Benjamin, J.E., Heinflink, M., and Gershengorn, M.C. (1992) Endocrinology 130, 1879-1884). Here we show that TRH regulates RNase activity in GH3 cells and that specific mRNA sequences are needed for in vivo regulation of TRH-R mRNA by TRH. TRH affected RNase activity in a biphasic manner with rapid stimulation (by 10 min) followed by a decrease to a rate slower than in control lysates within 6 h. This time course paralleled the effects of TRH on degradation of TRH-R mRNA in vivo. The regulated RNase activity was in a polysome-free fraction of the lysates and was not specific for TRH-R RNA. A truncated form of TRH-R RNA that was missing the entire 3'-untranslated region (TRHR-R5) was more stable than full-length TRH-R RNA (TRHR-WT). In contrast to TRHR-WT mRNA, TRHR-R5 mRNA and TRHR-D9 mRNA, which was missing the 143 nucleotides 5' of the poly(A) tail, were not down-regulated by TRH in stably transfected GH3 cells as their rates of degradation were not increased. These data show that TRH regulates RNase activity in GH3 cells, that the 3'-untranslated region bestows decreased stability on TRH-R mRNA and that the 3' end of the mRNA is necessary for regulation by TRH of TRH-R mRNA degradation. We present an hypothesis that explains specific regulation of TRH-R mRNA degradation by TRH in GH3 pituitary cells. 相似文献
14.
Atrial natriuretic factor-induced cGMP accumulation in rat anterior pituitary cells in culture is not coupled to hormonal secretion 总被引:1,自引:0,他引:1
While atrial natriuretic factor (ANF) does not influence ACTH secretion, it was reported to have a marked stimulatory effect on the intracellular accumulation of cGMP in rat anterior pituitary cells in culture. Since many biological actions of ANF appear coupled to its excitatory action on target cell guanylate cyclase, the current study was designed to characterize the ANF-induced cGMP response in anterior pituitary with a view to determining whether the nucleotide plays a regulatory role in the secretory function of this gland. A 3 min exposure of cells in primary culture to 300 nM ANF (99-126) or 100 microM sodium nitroprusside (SNP), a stimulator of guanylate cyclase, causes maximal 10- and 3-fold elevations of cGMP levels, respectively. Following a progressive decrease, 6- and 2-fold increases over basal cGMP levels are still observed after 180 min of incubation with ANF (99-126) and SNP, respectively. The half-maximal stimulation of cGMP accumulation induced by a 10 min exposure to ANF (99-126), or rat atriopeptin II (ANF 103-125) is observed at 9 +/- 2 and 125 +/- 22 nM, respectively. ANF fragments (99-109) and (111-126), as well as human cardiodilatin (hANF 1-16), do not alter cGMP levels. Basal and ANF-induced cGMP levels are at least 10-fold higher in cell populations enriched in gonadotrophs compared to gonadotroph-impoverished preparations. A 3 h incubation of cells with ANF (0.1-1000 nM), however, fails to modify spontaneous or LHRH-induced LH secretion. Similarly, ANF does not alter spontaneous release of GH, TSH or PRL. The data suggest indirectly that gonadotrophs represent a principal site at which ANF acts to stimulate cGMP synthesis, but that the nucleotide is not a specific regulator of the LH secretory process; nor is it generally involved as a second messenger in the secretory function of any cell type of the anterior pituitary gland. 相似文献
15.
Stimulation of single L-type calcium channels in rat pituitary GH3 cells by thyrotropin-releasing hormone. 下载免费PDF全文
Hormonal stimulation of voltage-dependent Ca2+ channels in pituitary cells is thought to contribute to the sustained phase of Ca2+ entry and secretion induced by secretion stimulating hormones and has been suggested as a mechanism for refilling the Ca2+ stores. Using the cell-attached patch-clamp technique, we studied the stimulation of single Ca2+ channels by thyrotropin-releasing hormone (TRH) in rat GH3 cells. We show that TRH applied from the bath switched the activity of single L-type Ca2+ channels from a gating mode with very low open probability (po) to a gating mode with slightly smaller conductance but 10 times higher po. Interconversions between these two gating modes were also observed under basal conditions, where the equilibrium was shifted towards the low po mode. TRH applied from the pipette had no effect, indicating the involvement of a cytosolic compound in the stimulatory pathway. We show that TRH does not potentiate all the L-type Ca2+ channels in a given membrane patch and report evidence for co-expression of two functionally different L-type Ca2+ channels. Our results uncover the biophysical mechanism of hormonal stimulation of voltage-dependent Ca2+ channels in GH3 cells and are consistent with differential modulation of different subtypes of dihydropyridine-sensitive Ca2+ channels. 相似文献
16.
Mitogen-activated protein kinase activation by stimulation with thyrotropin-releasing hormone in rat pituitary GH3 cells. 总被引:2,自引:0,他引:2
We examined whether mitogen-activated protein (MAP) kinase is activated by thyrotropin-releasing hormone (TRH) in GH3 cells, and whether MAP kinase activation is involved in secretion of prolactin from these cells. Protein kinase inhibitors--such as PD098059, calphostin C, and genistein--and removal of extracellular Ca2+ inhibited MAP kinase activation by TRH. A cAMP analogue activated MAP kinase in these cells. Effects of cAMP on MAP kinase activation were inhibited by PD098059. TRH-induced prolactin secretion was not inhibited by levels of PD098059 sufficient to i activation but was inhibited by wortmannin (1 microM) and KN93. Treatment of GH3 cells with either TRH or cAMP significantly inhibited DNA synthesis and induced morphological changes. The effects stimulated by TRH were reversed by PD098059 treatment, but the same effects stimulated by cAMP were not. Treatment of GH3 cells with TRH for 48 h significantly increased the prolactin content in GH3 cells and decreased growth hormone content. The increase in prolactin was completely abolished by PD098059, but the decrease in growth hormone was not. These results suggest that TRH-induced MAP kinase activation is involved in prolactin synthesis and differentiation of GH3 cells, but not in prolactin secretion. 相似文献
17.
Kanasaki H Fukunaga K Takahashi K Miyazaki K Miyamoto E 《Biology of reproduction》2000,62(6):1486-1494
Bromocriptine, a dopamine D(2) receptor agonist, is a therapeutic agent for patients with prolactinoma and hyperprolactinemia. In this study we demonstrated that bromocriptine induced activation of p38 mitogen-activated protein (MAP) kinase, with concomitant induction of apoptosis in rat pituitary adenoma cell line GH3 cells. Treatment of GH3 cells for 48 h with bromocriptine increased the p38 MAP kinase activity up to 3- to 5-fold and simultaneously increased the number of apoptotic cells. Inclusion in the medium of SB212090 or SB203580, specific p38 MAP kinase inhibitors, completely abolished the bromocriptine-induced activation of p38 MAP kinase and significantly reduced the number of apoptotic cells. The bromocriptine-induced p38 MAP kinase activation was not prevented by S(-)-eticropride hydrochloride, a specific D(2) receptor antagonist. Treatment with either epidermal growth factor (EGF) or thyrotropin-releasing hormone (TRH), which stimulates p44/42 MAP kinase, rescued cells from the bromocriptine-induced apoptosis, with concomitant inhibition of the bromocriptine-induced p38 MAP kinase activation. These results suggest that bromocriptine induces apoptosis in association with p38 MAP kinase activation, and that the p44/42 MAP kinase signaling through EGF and TRH receptors has an opposing effect on p38 MAP kinase activation as well as on apoptosis induced with bromocriptine in GH3 cells. 相似文献
18.
Thyroliberin (TRH), dibutyryl cyclic AMP (db-cAMP), and 3-isobutyl-l-methylxanthine (MIX) had a stimulatory effect on prolactin (PRL) and growth hormone (GH) release from GH 3 cells. Half-maximal and maximal effects were observed for TRH at 2.5 nM and 10 nM; for db-cAMP at 0.6 mM and 5 mM, respectively. MIX (0.1 mM–1 mM) induced a dose-dependent accumulation of cellular cyclic AMP, while the hormone release was already maximally stimulated at 0.1 mM MIX. The maximal effects on hormone release of TRH and db-cAMP, but not of TRH and MIX, were additive.The Ca2+ channel blockers Co2+ (5 mM) and verapamil (100 M) and the Ca2+ chelator EGTA (4 mM) abolished the stimulatory effect of TRH (1 M) on hormone release. Co2+ and verapamil, but not EGTA, inhibited the stimulatory effect of db-cAMP (5 mM) on hormone release. The inhibitory effects of Co2+ and verapamil on GH release were counteracted by the combination of TRH and db-cAMP. For PRL release Co2+, but not verapamil, was able to inhibit the combined action of TRH and db-cAMP. Co2+, verapamil, and EGTA eliminated the stimulatory effect of MIX (1 mM) on PRL release while only Co2+ and EGTA affected the GH release. Hormone release in the presence of MIX plus verapamil or EGTA, but not Co2+, was increased by TRH.The calmodulin antagonist trifluoperazine (TFP) at 30 M inhibited basal hormone release and hormone release stimulated by TRH (1 M), db-cAMP (5 mM), and MIX (1 mM). The Ca2+ ionophore A23187 (5 M) had a stimulatory effect on basal hormone release which was abolished by 30 M TFP. 相似文献
19.
Thyrotropin releasing hormone (TRH) accelerates the turnover of phosphatidylinositol in GH3 cells ('phospholipid response'). From the analysis of inositol phosphates in the presence of Li+ which inhibits their dephosphorylation, it can be concluded that the hydrolysis of phosphatidylinositol 4,5-biphosphate, and possibly of phosphatidylinositol 4-phosphate by phospholipase C is markedly accelerated by TRH. It appears that this reaction initiates the acceleration of phosphatidylinositol turnover. The specificity of hormonally regulated phospholipase C reaction for polyphosphoinositides has important implications for the potential role of the phospholipid response as a mechanism of membrane signal transduction. 相似文献
20.
Chamero P Manjarres IM García-Verdugo JM Villalobos C Alonso MT García-Sancho J 《Cell calcium》2008,43(2):205-214
It has been proposed that nuclear and cytosolic Ca(2+) ([Ca(2+)](N) and [Ca(2+)](C)) may be regulated independently. We address here the issue of whether inositol trisphosphate (IP(3)) can, bypassing changes of [Ca(2+)](C), produce direct release of Ca(2+) into the nucleoplasm. We have used targeted aequorins to selectively measure and compare the changes in [Ca(2+)](C) and [Ca(2+)](N) induced by IP(3) in GH(3) pituitary cells. Heparin, an IP(3) inhibitor that does not permeate the nuclear pores, abolished the [Ca(2+)](C) peaks but inhibited only partly the [Ca(2+)](N) peaks. The permeant inhibitor 2-aminoethoxy-diphenyl-borate (2-APB) blocked both responses. Removal of ATP also inhibited more strongly the [Ca(2+)](C) than [Ca(2+)](N) peak. The [Ca(2+)](N) and [Ca(2+)](C) responses differed also in their sensitivity to IP(3), the nuclear response showing higher affinity. Among IP(3) receptors, type 2 (IP(3)R2) has a higher affinity for IP(3) and is not inactivated by ATP removal. We find that IP(3)R2 immunoreactivity is present inside the nucleus whereas the other IP(3)R subtypes are detected only in the cytoplasm. The nuclear envelope (NE) of GH(3) cells showed deep invaginations into the nucleoplasm, with cytosol and cytoplasmic organella inside. These results indicate that GH(3) pituitary cells possess mechanisms able to produce selective increases of [Ca(2+)](N). 相似文献