首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of pentaammineruthenium (III) to ribonuclease A and B both free and complexed with d(pA)4 has been examined in the crystalline state through the application of X-ray diffraction and difference Fourier techniques. In crystals of native RNase B, the reagent was observed to have many binding sites, some entirely electrostatic in nature and others consistent with coordination to histidine residues. The primary histidine in the latter case was 105 with 119 also partially substituted. In crystals of RNase A+d(pA)4 complex only a single, extremely strong site of substitution was observed, and this was 2.4 Å from the native position of the imidazole ring of histidine 105. Thus, the results of these X-ray diffraction studies appear to be quite consistent with the findings of earlier NMR studies and with the results obtained in crystals of the gene 5 DNA binding protein.  相似文献   

2.
Crystal structure of RNase A complexed with d(pA)4   总被引:3,自引:0,他引:3  
Co-crystals of pancreatic RNase A complexed with oligomers of d(pA)4 were grown from polyethylene glycol 4000 at low ionic strength and the X-ray diffraction data were collected to 2.5 A resolution. From a series of heavy-atom derivatives a multiple isomorphous replacement-phased electron density map of the RNase-d(pA)4 complex was calculated to 3.5 A. By inspection, the disposition of the known structure of RNase in the unit cell was determined and this was confirmed by calculation of a standard crystallographic residual, R. Refinement of the protein alone in the unit cell as a strictly rigid body yielded an R factor of 0.32 at 2.8 A resolution. From difference Fourier syntheses DNA fragments were elucidated and incorporated into a model of the complex. The entire asymmetric unit was refined using a restrained-constrained least-squares procedure (CORELS) interspersed with difference Fourier syntheses. At the present time the crystal structure has been refined to an overall R value of 0.215 at 2.5 A resolution. The asymmetric unit of the complex crystals contains four oligomers of d(pA)4 associated with each molecule of RNase. In addition, there may also be partially ordered fragments of DNA at low occupancy present in the unit cell, but these have not, at this time, been incorporated into the model. One tetramer of d(pA)4 is entirely bound by a single protein molecule and occupies a portion of the active site cleft, filling the purine binding site and the phosphate site at the catalytic center with its 5' nucleotide. Two other tetramers are partly intermolecular. One passes from near the pyrimidine binding site over the surface of the protein toward arginine 39 and into a solvent region. A third tetramer is anchored at its 5' terminus by a salt link to lysine 98, passes near arginine and then through a solvent region to terminate with its 3' end near the surface of another protein molecule in the lattice. The fourth tetramer of d(pA)4 is bound at its 5' end on the opposite side of the protein from the active site in an electropositive anion trap that includes lysines 31 and 91 as well as arginine 33. There may be a DNA-DNA interaction involving the 5' phosphate of one tetramer and the 3' bases of two other tetramers and this may help to stabilize the crystalline complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interactions of RNase A with cytidine 3'-monophosphate (3'-CMP) and deoxycytidyl-3',5'-deoxyadenosine (d(CpA)) were analyzed by X-ray crystallography. The 3'-CMP complex and the native structure were determined from trigonal crystals, and the d(CpA) complex from monoclinic crystals. The differences between the overall structures are concentrated in loop regions and are relatively small. The protein-inhibitor contacts are interpreted in terms of the catalytic mechanism. The general base His 12 interacts with the 2' oxygen, as does the electrostatic catalyst Lys 41. The general acid His 119 has 2 conformations (A and B) in the native structure and is found in, respectively, the A and the B conformation in the d(CpA) and the 3'-CMP complex. From the present structures and from a comparison with RNase T1, we propose that His 119 is active in the A conformation. The structure of the d(CpA) complex permits a detailed analysis of the downstream binding site, which includes His 119 and Asn 71. The comparison of the present RNase A structures with an inhibitor complex of RNase T1 shows that there are important similarities in the active sites of these 2 enzymes, despite the absence of any sequence homology. The water molecules were analyzed in order to identify conserved water sites. Seventeen water sites were found to be conserved in RNase A structures from 5 different space groups. It is proposed that 7 of those water molecules play a role in the binding of the N-terminal helix to the rest of the protein and in the stabilization of the active site.  相似文献   

4.
Abstract

A Gram-positive, rod-shaped, endospore-forming, and RNA-degrading bacterium RB-5 was isolated from a soil sample. Based on 16-rDNA gene sequence, the bacterium RB-5 was identified as Bacillus safensis (Accession number KX443714.1). The bacterium appeared to be related to Bacillus safensis KL-052, an other-member of genus Bacillus. One-factor-at-a-time (OFAT) and Response Surface Methodology (RSM) statistical approaches were used to optimize the fermentation broth to obtain an improved extracellular RNase production from B. safensis RB-5. These approaches improved RNase activity of B. safensis KL-052 from 4.26 to 7.85?U/mL. The OFAT approach was used to study the effects of supplementation of carbon, nitrogen and physical conditions, which included temperature, pH and agitation rate on extracellular RNase production by B. safensis KL-052. Five variables screened by Central Composite Design (CCD) were employed to evaluate their interactive effects on RNase production by the organism. CCD selected 25 factorial values obtained by the statistical approach were peptone 1.13% (w/v), sodium nitrate 1.13% (w/v), MgSO4 0.06% (w/v), pH 8.5, and temperature 35?°C for RNase production by B. safensis. The highest predicted value of RNase was 7.05?U/ml while actual obtained value was 7.85?U/ml that was ~84% and 1.84-fold higher than OFAT approach.  相似文献   

5.
Preparation of recombinant RNase single-chain antibody fusion proteins   总被引:4,自引:0,他引:4  
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.  相似文献   

6.
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.  相似文献   

7.
RNase A has been extensively used as a model protein in several biophysical and biochemical studies. Using the available structural and biochemical results, RNase A-UpA interaction has been computationally modeled at an atomic level. In this study, the molecular dynamics (MD) simulations of native and UpA bound RNase A have been carried out. The gross dynamical behavior and atomic fluctuations of the free and UpA bound RNase A have been characterized. Principal component analysis is carried out to identify the important modes of collective motion and to analyze the changes brought out in these modes of RNase A upon UpA binding. The hydrogen bonds are monitored to study the atomic details of RNase A-UpA interactions and RNase A-water interactions. Based on these analysis, the stability of the free and UpA bound RNase A are discussed. © 1997 John Wiley & Sons, Inc. Biopoly 42: 505–520, 1997  相似文献   

8.
9.
The availabilities of single-stranded 5S rRNA regions c, d and d' for base pairing interactions were analyzed by using synthetic DNA oligomers. Hybrid formation was detected by the endonucleolytical mode of the RNA-DNA specific action of RNase H. Provided that the hybrid interaction involved 6 successive base pairs, 5S rRNA loop c nucleotides 42-47 displayed accessibility in Escherichia coli, Bacillus stearothermophilus and Thermus thermophilus 5S rRNAs as well as in eukaryotic 5S rRNAs from Saccharomyces carlsbergensis, Rattus rattus and Equisetum arvense. Investigating eubacterial 5S rRNA regions d and d' (nucleotides 71-76 and 99-105, respectively), susceptibility was observed in E. coli 5S rRNA which, however, decreases in B. stearothermophilus and even more so in T. thermophilus 5S rRNA. For additional evaluation of the data obtained by RNase H cleavage, association constants of the hexanucleotides were determined by equilibrium dialysis at 4 degrees C for B. stearothermophilus 5S rRNA. The results obtained reveal that nucleotides 36-41 of B. stearothermophilus 5S rRNA are inaccessible for Watson-Crick interaction, which suggests that this part of loop c is in a structurally constrained configuration, or buried in the tertiary structure or involved in tertiary interactions.  相似文献   

10.
Chemical modifications of bull seminal ribonuclease (AS RNase) cause considerable changes in its cytotoxic activity. However, binding of AS RNase on cells has been changed little or not at all. Every modification (oxidation, reduction, carbomethylation, succinylation and maleylation) inhibited ribonuclease and aspermatogenic and embryotoxic activity of AS RNase. The common cytotoxic effect was also changed to some degree. Inhibition of incorporation of 3H-thymidine to BP-8 tumor cells in culture was observed after application of native, oxidized, reduced, and carboxymethylated AS RNase.  相似文献   

11.
从普通小麦(Triticum aestivum L.)中分离了一个类核糖核酸酶(WRN1)基因的cDNA。WRN1的转录受自然衰老和黑暗诱导衰老的负调控。在幼嫩组织中WRN1也有表达。由于在两个保守的位置上组氨酸被替换,WRNl很可能已经失去了核糖核酸酶的活性。Southern分析表明,在普通小麦基因组中,WRN1以一个小基因家族的形式存在。  相似文献   

12.
从普通小麦(Triticum aestivum L.)中分离了一个类核糖核酸酶(WRN1)基因的cDNA.WRN1的转录受自然衰老和黑暗诱导衰老的负调控.在幼嫩组织中WRN1也有表达.由于在两个保守的位置上组氨酸被替换,WRN1很可能已经失去了核糖核酸酶的活性.Southern分析表明,在普通小麦基因组中,WRN1以一个小基因家族的形式存在.  相似文献   

13.
The evolution of the ribonuclease A (RNase A) vertebrate-specific enzyme family is interesting in that specific gene lineages appear to be responding to unique selective pressures in wildly diverse manners to generate proteins that are capable of reducing the infectivity of viruses, killing systemic pathogens, and inducing the growth of blood vessels all while maintaining the signature motifs of a ribonuclease. In this paper, we present the DNA sequence and gene structure of Mus musculus RNase 6 and examine the expression pattern and enzymatic activity of the recombinant protein. M. musculus RNase 6 has a limited expression pattern compared to human RNase 6 and is an efficient ribonuclease, with a catalytic efficiency 17-fold higher than that of human protein. Evo- lutionary analysis reveals that RNase 6 was subject to unusual evolutionary forces (dN/dS=1.2) in an ancestral rodent lineage before the separation of Mus and Rattus. However, more recent evolution of rodent RNase 6 has been relatively conserved, with an average dN/dS of 0.66. These data suggest that the ancestral rodent RNase 6 was subject to accelerated evolution, resulting in the conserved modern gene, which most likely plays an important role in mouse physiology.Reviewing Editor: Dr. Lauren Ancel MeyersThe GenBank accession numbers for the new genes presented here are as follows: Mus musculus, AY545655; Rattus norvegicus, AY545654; Mus spicilegus, AY545653; Mus caroli, AY545651; and Mus pahari, AY545652.  相似文献   

14.
A base-nonspecific and acid ribonuclease (RNase Ok2) was purified from the liver of a salmon (Oncorhnchus keta) to a homogeneous state by SDS-PAGE. The primary structure of RNase Ok2 was determined by protein chemistry and molecular cloning. The RNase Ok2 was a glycoprotein and consisted of 216 amino acid residues. Its molecular mass of protein moiety was 25,198, and its amino acid sequence showed that it belongs to the RNase T2 family of enzymes. The optimal pH of RNase Ok2 was around 5.5. The base preferences at the B1 and B2 sites were estimated from the rates of hydrolysis of 16 dinucleoside phosphates to be G>A>U, C, and G>A>U>C respectively. In this enzyme, one of the three histidine residues which have been thought to be important for catalysis of RNase Rh, a typical RNase of this family of enzymes, His104 was replaced by tyrosine residue. Based on the results, the role of H104, which has been proposed to be a phosphate binding site with a substrate, was reconsidered, and we proposed a revised role of this His residue in the hydrolysis mechanism of RNase T2 family enzymes.  相似文献   

15.
The conditions for accurately determining distance constraints from TrNOESY data on a small ligand (3'CMP) bound to a small protein (RNase A, <14 kDa) are described. For small proteins, normal TrNOESY conditions of 10:1 ligand:protein or greater can lead to inaccurate structures for the ligand-bound conformation due to the contribution of the free ligand to the TrNOESY signals. By using two ligand:protein ratios (2:1 and 5:1), which give the same distance constraints, a conformation of 3'CMP bound to RNase A was determined (glycosidic torsion angle, chi=-166 degrees ; pseudorotational phase angle, 0 degrees < or = P < or =36 degrees ). Ligand-protein NOESY cross peaks were also observed and used to dock 3'CMP into the binding pocket of the apo-protein (7rsa). After energy minimization, the conformation of the 3'CMP:RNase A complex was similar to the X-ray structure (1 rpf) except that a C3'-endo conformation for the ribose ring (rather than C2'-exo conformation) was found in the TrNOESY structure.  相似文献   

16.
The crystal structure of ribonuclease B at 2.5-A resolution   总被引:3,自引:0,他引:3  
The glycosylated form of bovine pancreatic ribonuclease, RNase B, was crystallized from polyethylene glycol 4000 at low ionic strength in space group C2 with unit cell dimensions of a = 101.81 A, b = 33.36 A, c = 73.60 A, and beta = 90.4 degrees. The crystals, which contained two independent molecules of RNase B as the asymmetric unit, were solved by a combination of multiple isomorphous replacement and molecular replacement approaches. The structures of the two molecules were refined to 2.5-A resolution and a conventional R factor of 0.22 using a constrained-restrained least squares procedure (CORELS). Complexes were also investigated of RNase B plus ruthenium pentaamine and between RNase B and a substrate analogue iodouridine. The polypeptide backbones of the two molecules of RNase B in the asymmetric unit were found to be statistically identical and their differences from RNase A to be statistically insignificant. The carbohydrate chains of both molecules extended into solvent cavities in the crystal lattice and appear to be disordered for the most part. The oligosaccharides appear to exert no influence on the structure of the protein. Iodouridine was observed to bind identically in the pyrimidine site of both RNase B molecules and in a way apparently the same as that previously observed for RNase A. Ruthenium pentaamine bound at histidine 105 of both RNase B molecules in the asymmetric unit, but at a number of secondary sites as well. An array of bound ions was observed by Fo-Fc difference Fourier syntheses. These ions were proximal to lysine and arginine residues at the surface of the proteins while a pair of strong ion binding sites were seen to fall exactly in the active site clefts of both RNase B molecules in the asymmetric unit.  相似文献   

17.
A cDNA for an S-like RNase (RNase PD2) has been isolated from a pistil cDNA library of Prunus dulcis cv. Ferragnés. The cDNA encodes an acidic protein of 226 amino acid residues with a molecular weight of 25 kDa. A potential N-glycosylation site is present at the N-terminus in RNase PD2. A signal peptide of 23 amino acid residues and a transmembrane domain are predicted. The two active-site histidines present in enzymes of the T2/S RNase superfamily were detected in RNase PD2. Its amino acid sequence shows 71.2% similarity to RNS1 of Arabidopsis and RNase T2 of chickpea, respectively. Northern blotting and RT-PCR analyses indicate that PD2 is expressed predominantly in petals, pistils of open flowers and leaves of the almond tree. Analyses of shoots cultured in vitro suggested that the expression of RNase PD2 is associated with phosphate starvation. Southern analysis detected two sequences related to RNase PD2 in the P. dulcis genome. RFLP analysis showed that S-like RNase genes are polymorphic in different almond cultivars. The PD2 gene sequence was amplified by PCR and two introns were shown to interrupt the coding region. Based on sequence analysis, we have defined three classes of S-like RNase genes, with the PD2 RNase gene representing a distinct class. The significance of the structural divergence of S-like RNase genes is further discussed. Received: 24 January 2000 / Accepted: 17 March 2000  相似文献   

18.
A magnetic sensor technique was applied to analyze the interaction of immobilized bacterial RNase P protein and 3′-biotinylated RNase P RNA bound to streptavidin-coated magnetic beads. Our measurements with three types of beads from different suppliers resulted in Kd values of about 1–2 nM (at 4.5 mM Mg2+ and 150 mM NH4+) for Escherichia coli RNase P RNA and protein, consistent with previous analyses using different techniques. We further measured affinity of the E. coli RNase P protein to chimeric RNase P RNA variants, consisting of an E. coli specificity domain and an engineered archaeal catalytic domain. A “bacterial-like” 1-bp insertion and 2-nt deletion in the helix P2/P3 region largely improved affinity, providing independent evidence that these elements are crucial for interaction of the two RNase P subunits. Moreover, our study documents that the properties of the streptavidin-coated magnetic beads decide on success or failure of the technique.  相似文献   

19.
Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.  相似文献   

20.
The conformational changes induced in Fab fragments of polyclonal anti-RNase antibody molecules obtained by digestion with papain as a result of binding of pancreatic RNase have been studied. The RNase-Fab complex (RN-Fab), being soluble, could be subjected to thermodynamic investigations using optical strategies, also because of the absence of tryptophan in RNase. Internalization of the chromophores (tryptophans and tyrosines) of Fab occurs when it binds to RNase, suggesting an increase in the compactness of Fab due to the binding of RNase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号