首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Swaminathan S 《The FEBS journal》2011,278(23):4467-4485
The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.  相似文献   

2.
The review presents both our own and literature data on studies of pathways of evolution of the so-called multinuclear blue copper-proteins (MBCP) that have the domain organization. The MBCP are widely spread in living nature, they have been revealed in cells of archei, bacteria, and eukaryotes. The MBCP composition includes the copper-proteins such different by their properties as oxidases, reductase, blood coagulation factors V and VIII. Most likely, MBCP have been originated from a low-molecular protein-precursor similar topologically with the blue electron-transporting protein of the cupredoxin type, as a result of action of various evolutionary mechanisms: amplification of genes, formation of protein structures by different combinations of domains, a change of size of domains, the segment elongation at the expense of the activational domain, formation and loss of copper-binding centers, variation of amino acid ligands in such centers, the appearance of centers of binding of other proteins, glycosylation, etc.  相似文献   

3.
Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain-encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. Here, we describe a comprehensive, genome-wide analysis of the relationship between these two processes. We observe a strong and robust correlation between domain versatility and abundance: domains that occur more often also have many different combination partners. This supports the view that domain recombination occurs in a random way. However, we do not observe all the different combinations that are expected from a simple random recombination scenario, and this is due to frequent duplication of specific domain combinations. When we simulate the evolution of the protein repertoire considering stochastic recombination of domains followed by extensive duplication of the combinations, we approximate the observed data well. Our analyses are consistent with a stochastic process that governs domain recombination and thus protein divergence with respect to domains within a polypeptide chain. At the same time, they support a scenario in which domain combinations are formed only once during the evolution of the protein repertoire, and are then duplicated to various extents. The extent of duplication of different combinations varies widely and, in nature, will depend on selection for the domain combination based on its function. Some of the pair-wise domain combinations that are highly duplicated also recur frequently with other partner domains, and thus represent evolutionary units larger than single protein domains, which we term "supra-domains".  相似文献   

4.
Spider dragline silk proteins, spidroins, have a tripartite composition; a nonrepetitive N-terminal domain, a central repetitive region built up from many iterated poly-Ala and Gly rich blocks, and a C-terminal nonrepetitive domain. It is generally believed that the repetitive region forms intermolecular contacts in the silk fibers, while precise functions of the terminal domains have not been established. Herein, thermal, pH, and salt effects on the structure and aggregation and/or polymerization of recombinant N- and C-terminal domains, a repetitive segment containing four poly-Ala and Gly rich coblocks, and combinations thereof were studied. The N- and C-terminal domains have mainly alpha-helical structure, and interestingly, both form homodimers. Dimerization of the end domains allows spidroin multimerization independent of the repetitive part. Reduction of an intersubunit disulfide in the C-terminal domain lowers the thermal stability but does not affect dimerization. The repetitive region shows helical secondary structure but appears to lack stable folded structure. A protein composed of this repetitive region linked to the C-terminal domain has a mainly alpha-helical folded structure but shows an abrupt transition to beta-sheet structures upon heating. At room temperature, this protein self-assembles into macroscopic fibers within minutes. The secondary structures of none of the domains are altered by pH or salt. However, high concentrations of phosphate affect the tertiary structure and accelerate the aggregation propensity of the repetitive region. Implications of these results for dragline spidroin behavior in solution and silk fiber formation are discussed.  相似文献   

5.

Background

Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations (??promiscuous?? domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages.

Results

Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements (??cassettes??). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii.

Conclusion

Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.  相似文献   

6.
Diversity and evolution of the thyroglobulin type-1 domain superfamily   总被引:1,自引:0,他引:1  
Multidomain proteins are gaining increasing consideration for their puzzling, flexible utilization in nature. The presence of the characteristic thyroglobulin type-1 (Tg1) domain as a protein module in a variety of multicellular organisms suggests pivotal roles for this building block. To gain insight into the evolution of Tg1 domains, we performed searches of protein, expressed sequence tag, and genome databases. Tg1 domains were found to be Metazoa specific, and we retrieved a total of 170 Tg1 domain-containing protein sequences. Their architectures revealed a wide taxonomic distribution of proteins containing Tg1 domains followed or preceded by secreted protein, acidic, rich in cysteines (SPARC)-type extracellular calcium-binding domains. Other proteins contained lineage-specific domain combinations of peptidase inhibitory modules or domains with different biological functions. Phylogenetic analysis showed that Tg1 domains are highly conserved within protein structures, whereas insertion into novel proteins is followed by rapid diversification. Seven different basic types of protein architecture containing the Tg1 domain were identified in vertebrates. We examined the evolution of these protein groups by combining Tg1 domain phylogeny with additional analyses based on other characteristic domains. Testicans and secreted modular calcium binding protein (SMOCs) evolved from invertebrate homologs by introduction of vertebrate-specific domains, nidogen evolved by insertion of a Tg1 domain into a preexisting architecture, and the remaining four have unique architectures. Thyroglobulin, Trops, and the major histocompatibility complex class II-associated invariant chain are vertebrate specific, while an insulin-like growth factor-binding protein and nidogen were also identified in urochordates. Among vertebrates, we observed differences in protein repertoires, which result from gene duplication and domain duplication. Members of five groups have been characterized at the molecular level. All exhibit subtle differences in their specificities and function either as peptidase inhibitors (thyropins), substrates, or both. As far as the sequence is concerned, only a few conserved residues were identified. In combination with structural data, our analysis shows that the Tg1 domain fold is highly adaptive and comprises a relatively well-conserved core surrounded by highly variable loops that account for its multipurpose function in the animal kingdom.  相似文献   

7.
We have used 1H nuclear magnetic resonance spectroscopy to determine the solution structures of two small (61 and 64 residue) immunoglobulin G (IgG)-binding domains from protein G, a cell-surface protein from Streptococcus strain G148. The two domains differ in sequence by four amino acid substitutions, and differ in their affinity for some subclasses of IgG. The structure of domain II was determined using a total of 478 distance restraints, 31 phi and 9 chi 1 dihedral angle restraints; that of domain III was determined using a total of 445 distance restraints, 31 phi and 9 chi 1 dihedral angle restraints. A protocol which involved distance geometry, simulated annealing and restrained molecular dynamics was used to determine ensembles of 40 structures consistent with these restraints. The structures are found to consist of an alpha-helix packed against a four-stranded antiparallel-parallel-antiparallel beta-sheet. The structures of the two domains are compared to each other and to the reported structure of a similar domain from a protein G from a different strain of Streptococcus. We conclude that the difference in affinity of domains II and III for IgG is due to local changes in amino acid side-chains, rather than a more extensive change in conformation, suggesting that one or more of the residues which differ between them are directly involved in interaction with IgG.  相似文献   

8.
Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a quarter of the supra-domains, we provide a list of the most important unknown supra-domains as potential targets for structural genomics projects.  相似文献   

9.
Protein disulfide isomerase (PDI) is an enzyme that promotes protein folding by catalyzing disulfide bridge isomerization. PDI and its relatives form a diverse protein family whose members are characterized by thioredoxin-like (TX) domains in the primary structures. The family was classified into four classes by the number and the relative positions of the TX domains. To investigate the evolution of the domain structures, we aligned the amino acid sequences of the TX domains, and the molecular phylogeny was examined by the NJ and ML methods. We found that all of the current members of the PDI family have evolved from an ancestral enzyme, which has two TX domains in the primary structure. The diverse domain structures of the members have been generated through domain duplications and deletions.  相似文献   

10.
The polypyrimidine tract binding protein (PTB) is an RNA binding protein that normally functions as a regulator of alternative splicing but can also be recruited to stimulate translation initiation by certain picornaviruses. High-resolution structures of the four RNA recognition motifs (RRMs) that make up PTB have previously been determined by NMR. Here, we have used small-angle X-ray scattering to determine the low-resolution structure of the entire protein. Scattering patterns from full-length PTB and deletion mutants containing all possible sequential combinations of the RRMs were collected. All constructs were found to be monomeric in solution. Ab initio analysis and rigid-body modeling utilizing the high-resolution models of the RRMs yielded a consistent low-resolution model of the spatial organization of domains in PTB. Domains 3 and 4 were found to be in close contact, whereas domains 2 and especially 1 had loose contacts with the rest of the protein.  相似文献   

11.
Staphylococcal protein A (SpA) is a virulence factor from Staphylococcus aureus that is able to bind to immunoglobulins. The 3D structures of its immunoglobulin (Ig) binding domains have been extensively studied by NMR and X-ray crystallography, and are often used as model structures in developing de novo or ab initio strategies for predicting protein structure. These small three-helix-bundle structures, reported in free proteins or Ig-bound complexes, have been determined previously using medium- to high-resolution data. Although the location and relative orientation of the three helices in most of these published 3D domain structures are consistent, there are significant differences among the reported structures regarding the tilt angle of the first helix (helix 1). We have applied residual dipolar coupling data, together with nuclear Overhauser enhancement and scalar coupling data, in refining the NMR solution structure of an engineered IgG-binding domain (Z domain) of SpA. Our results demonstrate that the three helices are almost perfectly antiparallel in orientation, with the first helix tilting slightly away from the other two helices. We propose that this high-accuracy structure of the Z domain of SpA is a more suitable target for theoretical predictions of the free domain structure than previously published lower-accuracy structures of protein A domains.  相似文献   

12.
Krupa A  Srinivasan N 《Genome biology》2002,3(12):research0066.1-research006614

Background

Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles.

Result

Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains.

Conclusions

Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.
  相似文献   

13.
Structural basis for the actin-binding function of missing-in-metastasis   总被引:1,自引:0,他引:1  
The adaptor protein missing-in-metastasis (MIM) contains independent F- and G-actin binding domains, consisting, respectively, of an N-terminal 250 aa IRSp53/MIM homology domain (IMD) and a C-terminal WASP-homology domain 2 (WH2). We determined the crystal structures of MIM's IMD and that of its WH2 bound to actin. The IMD forms a dimer, with each subunit folded as an antiparallel three-helix bundle. This fold is related to that of the BAR domain. Like the BAR domain, the IMD has been implicated in membrane binding. Yet, comparison of the structures reveals that the membrane binding surfaces of the two domains have opposite curvatures, which may determine the type of curvature of the interacting membrane. The WH2 of MIM is longer than the prototypical WH2, interacting with all four subdomains of actin. We characterize a similar WH2 at the C terminus of IRSp53 and propose that in these two proteins WH2 performs a scaffolding function.  相似文献   

14.
Most proteins in genomes are the result of the recombination of two or more domains. It has been found that if proteins are formed by a combination of domains from superfamilies A and B, then the domains may occur in the sequential order AB or BA but only in about 2% of cases do they occur in both sequential orders. The classical Rossmann domains of known structure are combined with catalytic domains from seven different superfamilies. In addition, there are eight cases where structures with both AB and BA domain combinations are known. For these two sets of structures, we analysed: (i) the relative orientation of the domains; (ii) the type of domain connection; (iii) the structure of the interdomain links; and (iv) domain function. The results of this analysis indicate that in most cases domain order is conserved because recombination of the domains has only occurred once during the course of evolution. Functional reasons become important when the domain connections are short. In seven out of the eight known cases where domains are combined in the AB and BA sequential orders they have different geometrical relationships that give them different functional properties.  相似文献   

15.
The repertoire of naturally occurring protein structures is usually characterised in structural terms at the domain level by their constituent folds. As structure is acknowledged to be an important stepping stone to the understanding of protein function, an appreciation of how individual domain interactions are built to form complete, functional protein structures is essential. A comprehensive study of protein domain interactions has been undertaken, covering all those observed in known structures, as well as those predicted to occur in 46 completed genome sequences from all three domains of life. In particular, we examine the promiscuity of protein domains characterised by SCOP superfamilies in terms of their interacting partners, the surface they use to form these interactions, and the relative orientations of their domain partners. Protein domains are shown to display a variety of behaviours, ranging from high promiscuity to absolute monogamy of domain surface employed, with both multiple and single domain partners. In addition, the conservation of sequence and volume at domain interface surfaces is observed to be significantly higher than at accessible surface in general, acting as a powerful potential predictor for domain interactions. We also examine the separation of interacting domains in protein sequence, showing that standard thresholds of 30 amino acid residues lead to a significant false positive rate, and an even more significant false negative rate of approximately 40%. These data suggest that there may be many more than the 2000 domain--domain interactions that have not yet been observed structurally, and we provide a top 30 hit-list of putative domain interactions which should be targeted.  相似文献   

16.
17.
PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.  相似文献   

18.
Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.  相似文献   

19.
Domain structure and organisation in extracellular matrix proteins.   总被引:8,自引:0,他引:8  
Extracellular matrix (ECM) proteins are large modular molecules built up from a limited set of modules, or domains. The basic folds of many domains have now been determined by crystallography or NMR spectroscopy. Recent structures of domain pairs and larger tandem arrays, as well as of oligomerisation domains, have begun to reveal the principles underlying the higher order architecture of ECM proteins. Structural information, coupled with site-directed mutagenesis, has been instrumental in showing how adjacent domains can co-operate in ligand binding. Very recently, the first heterotypic ECM protein complexes have become available. Here, we review the advances of the last 5 years in understanding ECM protein structure, with special emphasis on those structures that have given insight into the biological functions of ECM proteins.  相似文献   

20.
Structure prediction methods have been used to establish a domain structure for the voltage-dependent calcium channel beta subunit, beta1b. One domain was identified from homology searches as an SH3 domain, whilst another was shown, using threading algorithms, to be similar to yeast guanylate kinase. This domain structure suggested relatedness to the membrane-associated guanylate kinase protein family, and that the N-terminal domain of the beta subunit might be similar to a PDZ domain. Three-dimensional model structures have been constructed for these three domains. The extents of the domains are consistent with functional properties and mutational assays of the subunit, and provide a basis for understanding its modulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号