首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two freshwater populations and one marine population (Baltic Sea) of threespine stickeback (Gasterosteus aculeatus) from Northeastern Germany were studied with regard to locomotory capacity: sustained swimming performance, activities of key enzymes in axial muscle, pectoral fin muscle and heart, and morphology. We postulated that life history differences between migratory Baltic Sea and resident freshwater populations could have led to a divergence in their locomotory capacity. The activity of citrate synthase (CS) in pectoral muscle correlated with critical swimming speed. Critical swimming speed, aerobic and anaerobic capacity of the pectoral fin muscle were population-specific. The Baltic Sea sticklebacks had a higher locomotory capacity (activity of CS in pectoral muscle, critical swimming speed) than sticklebacks of one freshwater population. However, another freshwater population expressed a similar locomotory capacity as the Baltic Sea population. In addition, Baltic Sea sticklebacks had a greater mass and lower anaerobic capacity of the pectoral fin muscle than the freshwater sticklebacks. The results are interpreted as an indication of a proceeding divergence between marine and resident freshwater populations and between freshwater populations of G. aculeatus originating from marine ancestors. The migratory Baltic Sea sticklebacks had better morphological prerequisites for sustained swimming than both freshwater populations, but there was no general difference in the locomotory capacity between marine and freshwater sticklebacks. However, their morphology could favour a more effective locomotion in the Baltic Sea sticklebacks.  相似文献   

2.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

3.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

4.
Several complementary studies were undertaken on a single species of deep-sea fish (the eel Synaphobranchus kaupii) within a small temporal and spatial range. In situ experiments on swimming and foraging behaviour, muscle performance, and metabolic rate were performed in the Porcupine Seabight, northeast Atlantic, alongside measurements of temperature and current regime. Deep-water trawling was used to collect eels for studies of animal distribution and for anatomical and biochemical analyses, including white muscle citrate synthase (CS), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), and pyruvate kinase (PK) activities. Synaphobranchus kaupii demonstrated whole-animal swimming speeds similar to those of other active deep-sea fish such as Antimora rostrata. Metabolic rates were an order of magnitude higher (31.6 mL kg(-1) h(-1)) than those recorded in other deep-sea scavenging fish. Activities of CS, LDH, MDH, and PK were higher than expected, and all scaled negatively with body mass, indicating a general decrease in muscle energy supply with fish growth. Despite this apparent constraint, observed in situ burst or routine swimming performances scaled in a similar fashion to other studied species. The higher-than-expected metabolic rates and activity levels, and the unusual scaling relationships of both aerobic and anaerobic metabolism enzymes in white muscle, probably reflect the changes in habitat and feeding ecology experienced during ontogeny in this bathyal species.  相似文献   

5.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

6.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.  相似文献   

7.
Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the hypothesis that different types of whole-animal locomotion will respond differently to temperature acclimation, probably due to divergent physiological bases of locomotion. We studied two cyprinid fishes, tinfoil barbs (Puntius schwanenfeldii) and river barbels (Barbus barbus). Study fish were acclimated to either cold or warm temperatures for at least 6 wk and then assayed at four test temperatures for three types of swimming performance. We measured voluntary swimming velocity to estimate routine locomotor behavior, maximum fast start velocity to estimate anaerobic capacity, and critical swimming velocity to estimate primarily aerobic capacity. All three performance measures showed some acute thermal dependence, generally a positive correlation between swimming speed and test temperature. However, each performance measure responded quite differently to acclimation. Critical speeds acclimated strongly, maximum speeds not at all, and voluntary speeds uniquely in each species. Thus we conclude that long-term temperature exposure can have very different consequences for different types of locomotion, consistent with our hypothesis. The data also address previous hypotheses that predict that polyploid and eurythermal fish will have greater acclimation abilities than other fish, due to increased genetic flexibility and ecological selection, respectively. Our results conflict with these predictions. River barbels are eurythermal polyploids and tinfoil barbs stenothermal diploids, yet voluntary swimming acclimated strongly in tinfoil barbs and minimally in river barbels, and acclimation was otherwise comparable.  相似文献   

8.
In Arctica islandica, a long lifespan is associated with low metabolic activity, and with a pronounced tolerance to low environmental oxygen. In order to study metabolic and physiological responses to low oxygen conditions vs. no oxygen in mantle, gill, adductor muscle and hemocytes of the ocean quahog, specimens from the German Bight were maintained for 3.5 days under normoxia (21 kPa=controls), hypoxia (2 kPa) or anoxia (0 kPa). Tissue levels of anaerobic metabolites octopine, lactate and succinate as well as specific activities of octopine dehydrogenase (ODH) and lactate dehydrogenase (LDH) were unaffected by hypoxic incubation, suggesting that the metabolism of A. islandica remains fully aerobic down to environmental oxygen levels of 2 kPa. PO(2)-dependent respiration rates of isolated gills indicated the onset of metabolic rate depression (MRD) below 5 kPa in A. islandica, while anaerobiosis was switched on in bivalve tissues only at anoxia. Tissue-specific levels of glutathione (GSH), a scavenger of reactive oxygen species (ROS), indicate no anticipatory antioxidant response takes place under experimental hypoxia and anoxia exposure. Highest specific ODH activity and a mean ODH/LDH ratio of 95 in the adductor muscle contrasted with maximal specific LDH activity and a mean ODH/LDH ratio of 0.3 in hemocytes. These differences in anaerobic enzyme activity patterns indicate that LDH and ODH play specific roles in different tissues of A. islandica which are likely to economize metabolism during anoxia and reoxygenation.  相似文献   

9.
Summary The metabolic and structural differentiation of locomotory muscles of Notothenia rossii has been investigated. In this species sustained locomotion is achieved by sculling with enlarged pectoral fins (labriform locomotion), whilst the segmental myotomal muscle is reserved for burst activity. Red, white and subepidermal fibres can be distinguished in the trunk by histochemical and ultrastructural criteria. The main pectoral muscle (m. adductor profundus) consists entirely of red fibres. These three main fibres types show differences in histochemical staining profiles, capillarization, myofibril shape and packing, and lipid and mitochondrial content. The fractional volume of mitochondria amounts to 38% for pectoral, 30% for red myotomal and 1.9% for white myotomal fibres. Enzyme activities of red pectoral muscle are consistent with a higher potential for aerobic glucose and fatty acid oxidation than for the red myotomal fibres. Mg2+ Ca2+ -myofibrillar ATPase activities are similar for red pectoral and myotomal muscles and approximately half of those white fibres. Specialisations of N. rossii muscles associated with labriform swimming and locomotion at Antarctic temperatures are discussed.  相似文献   

10.
Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.  相似文献   

11.
The locomotory kinematics of Chironomus plumosus larvae and pupae were investigated in order to determine how different locomotory techniques may be related to (a) possible underlying patterns of muscle activation and (b) the particular lifestyles and behaviours of these juvenile stages. Larvae display three independent modes of motile activity: swimming, crawling and whole-body respiratory undulation. Swimming and respiratory undulation involve the use of metachronal waves of body bending which travel in a head-to-tail direction. Whereas swimming is produced by side-to-side flexures of the whole body, respiratory undulation employs a sinusoidal wave. Crawling appears to result from an independent programme of muscle activation. Instead of a longitudinally transmitting metachronal wave of body flexure, a simultaneous arching of the body, combined with the alternating use of the abdominal and prothoracic pseudopods as anchorage points, produces a form of locomotion analogous to caterpillar-looping. Larval swimming has a set speed and rhythm and is an 'all-or-nothing' locomotory manoeuvre, but the neural programme controlling larval crawling is adaptable; switching from a less to a more slippery substrate resulted in a shorter, faster stepping pattern. The pupa displays two swimming modes, somersaulting and eel-like whole-body undulation, the former being principally a brief, escape manoeuvre, the latter being a faster form of locomotion employed to deliver the pupa to the surface prior to adult emergence. Comparison with the pupa of the culicid Culex pipiens shows that this insect also uses the somersault mechanism but at a higher cycle frequency which produces a faster swimming speed. This appears to be related to differences in lifestyle; the surface-living culicid pupa is exposed to greater predator threat than the bottom-dwelling chironomid pupa, and consequently needs a faster escape.  相似文献   

12.
Animal locomotory morphology, i.e. morphological features involved in locomotion, is under the influence of a diverse set of ecological and behavioral factors. In teleost fish, habitat choice and foraging strategy are major determinants of locomotory morphology. In this study, we assess the influence of habitat use and foraging strategy on important locomotory traits, namely the size of the pectoral and caudal fins and the weight of the pectoral fin muscles, as applied to one of the most astonishing cases of adaptive radiation: the species flock of cichlid fishes in East African Lake Tanganyika. We also examine the course of niche partitioning along two main habitat axes, the benthic vs. limnetic and the sandy vs. rocky substrate axis. The results are then compared with available data on the cichlid adaptive radiation of neighbouring Lake Malawi. We find that pectoral fin size and muscle weight correlate with habitat use within the water column, as well as with substrate composition and foraging strategies. Niche partitioning along the benthic–limnetic axis in Lake Tanganyikan cichlids seems to follow a similar course as in Lake Malawi, while the course of habitat use with respect to substrate composition appears to differ between the cichlid assemblages of these two lakes.  相似文献   

13.
Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.  相似文献   

14.
This paper gives an overview of oxidative fuel metabolism in swimming fish, and known or potential modifications occurring in high-performance species are explored. Carbohydrate catabolism is the only source of ATP for sprint swimming where locomotory muscles operate as closed systems. In contrast, this substrate only plays a very minor role in prolonged swimming. Glucose fluxes have been measured in vivo in several species, but mainly at rest and with somewhat questionable methodologies. High-performance species may be able to sustain higher maximal glucose fluxes that their sedentary counterparts by: a) upregulating gluconeogenesis, b) increasing glucose transporter density or Vmax of individual transporters, c) storing larger amounts of glycogen in liver and muscle, and d) increasing muscle hexokinase activity. Even though lipids represent a much more important source of energy for sustained swimming, their fluxes have not been measured in vivo, even at rest, probably because of their diversity and complex chemistry. Except for elasmobranchs who do not possess plasma proteins for lipid transport, high-performance fish should be able to sustain high maximal lipid fluxes by: a) elevating lipolytic capacity, b) increasing rates of circulatory lipid transport through modified plasma proteins, c) augmenting intramuscular lipid reserves, and d) upregulating capacity for lipid oxidation in locomotory muscle mitochondria. The quantitative assessment of amino acid oxidation in swimming fish is a priority for future research because protein is probably a dominant metabolic fuel in most swimming fish. Finally, we predict that high-performance species should use proportionately more proteins/lipids and less carbohydrates than low-aerobic fish. Also, and similarly to endurance-adapted mammals, high-performance fish should increase their relative reliance on intramuscular fuel reserves and decrease their relative use of circulatory fuels.  相似文献   

15.
Climate influences the distribution of organisms because of the thermal sensitivity of biochemical processes. Animals may compensate for the effects of variable temperatures, and plastic responses may facilitate radiation into different climates. The tropical fish Oreochromis mossambicus has radiated into climates that were thought to be thermally unsuitable. Here, we test the hypothesis that thermal acclimation will extend the locomotory and metabolic performance range of O. mossambicus. Juvenile fish were acclimated to 14 degrees, 17 degrees, and 22 degrees C. We measured responses to acclimation at three levels of organization: whole-animal performance (sustained swimming and resting and recovery rates of oxygen consumption), mitochondrial oxygen consumption in caudal muscle, and metabolic enzyme activities in muscle and liver at 12 degrees, 14 degrees, 17 degrees, 22 degrees, and 26 degrees C. Thermal optima of sustained swimming performance (U(crit)) changed significantly with acclimation, but acclimation had no effect on either resting or recovery oxygen consumption. Fish compensated for cold temperatures by upregulating state 3 mitochondrial oxygen consumption and increasing activity of lactate dehydrogenase in the liver. The capacity for phenotypic plasticity in O. mossambicus means that the fish would not be limited by its locomotor performance or metabolic physiology to expand its range into cooler thermal environments from its current distribution.  相似文献   

16.
Murray short-necked turtles were trained to walk on a motorised treadmill and to swim in a recirculating flume. Through filmed records, the frequency of limb movement and the time that thrust was directed against the substrate were measured. The animals wore masks when walking and accessed air when swimming from a ventilated capsule placed on top of the water surface. Measurement of the exhalant O(2) and CO(2) levels from these devices enabled the measurement of metabolic rates. Equivalent data were obtained from swimming and hopping cane toads, although repeatable measures of limb frequency and contact times were not obtained due to the intermittent form of locomotion in this species. Comparing the cost of transport, the energy required to transport a mass of animal over a unit distance, with other animals showed that toads do not have a cheap form of terrestrial locomotion, but turtles do; turtles use half the cost predicted from their body mass. This economy of locomotion is consistent with what is known about turtle muscle, the mechanics of their gait, and the extremely long contact time for a limb with the substrate. Swimming in toads is energetically expensive, whereas turtles, on the basis of mass, use about the same energy to transport a unit mass as an equivalent-size fish. The data were compared with the predictions of the Kram-Taylor hypothesis for locomotory scaling, and walking turtles were found to provide a numerical fit. The data show that both terrestrial and aquatic locomotory energetics in toads are generally higher than predictions on the basis of mass, whereas in turtles they are lower.  相似文献   

17.
为考察鲤科鱼类种内个体标准代谢率的差异及其与运动性能和摄食性能的内在关联,本研究以我国广泛分布的鲤(Cyprinids cardio)幼鱼[体重(4.79±0.08)g,n=36]为实验对象,在(25.0±1.0)℃下分别测量实验鱼的标准代谢率(SMR),随后测定单尾鱼的特殊动力作用(SDA)、自发运动、临界游泳速度以及活跃代谢率(MO2active)。实验鱼标准代谢率(SMR)的变幅为76.7~317.6 mg/(kg·h),其变异系数(CV)达24.4%;实验鱼在10 min内的尾鳍摆动次数(P0.05)和摄食代谢峰值(P0.05)均与标准代谢率(SMR)呈正相关;活跃代谢率(MO2active)(P0.05)与摄食代谢峰值以及活跃代谢范围与摄食代谢范围(P0.05)均呈正相关。然而,鲤幼鱼的标准代谢率(SMR)与相对临界游泳速度、活跃代谢率(MO2active)、特殊动力作用(SDA)时间和特殊动力作用(SDA)总量均不相关(所有P0.05)。研究表明,较高标准代谢率(SMR)的鲤幼鱼个体表现较高的活跃性和较强的摄食代谢能力,可能有助于其更易发现食物、逃避天敌以及加快食物处理。  相似文献   

18.
Central to our understanding of locomotion in fishes are the performance implications of using different modes of swimming. Employing a unique combination of laboratory performance trials and field observations of swimming speed, this study investigated the comparative performance of pectoral and body-caudal fin swimming within an entire assemblage of coral reef fishes (117 species 10 families). Field observations of swimming behaviour identified three primary modes: labriform (pectoral 70 spp.), subcarangiform (body-caudal 29 spp.) and chaetodontiform (augmented body-caudal 18 spp.). While representative taxa from all three modes were capable of speeds exceeding 50 cm s−1 during laboratory trials, only pectoral-swimmers maintained such high speeds under field conditions. Direct comparisons revealed that pectoral-swimming species maintained field speeds at a remarkable 70% of their maximum (lab-tested) recorded speed; species using body-caudal fin propulsion maintained field speeds at around 50% of maximum. These findings highlight a profound influence of swimming mode on performance, with the relative mechanical and energetic efficiency of each swimming mode being of major importance. Combining attributes of efficiency, maneuverability and speed in one mode of propulsion, pectoral swimming appears to be a particularly versatile form of locomotion, well suited to a demersal lifestyle on coral reefs.  相似文献   

19.
Locomotory aspects of squid mantle structure   总被引:1,自引:0,他引:1  
Morphological aspects of squid ( Loligo, Lolliguncula ) mantle relevant to locomotory function were studied. Methods used included polarized light microscopy of frozen sections of untreated tissue taken from animals immediately after death and electron microscopy.
The mantle consists of circular and radial muscles arranged in alternating rings along the whole length of the mantle. The muscle is obliquely striated. Connective tissue fibres are found in the body of the muscle and in the outer and inner tunics. The outer tunic consists of layers of large collagenous fibres. The fibres run in superimposed right- and left-handed helical courses that lie at an angle of 27° to the long axis of the animal. The tunics and the intramuscular connective fibres are thought to resist length changes in the mantle while permitting the changes in girth required for the jet power stroke. Both the intramuscular and the tunic fibre systems may provide elastic energy for the return phase of the jet cycle. Tunic fibres appear to be a geodesic tensile reinforcing system ensuring smooth shape changes in the mantle.  相似文献   

20.
《Zoology (Jena, Germany)》2014,117(5):337-348
The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected individual fin rays, during four locomotor behaviors executed by free-swimming ghost knifefish: forward swimming, backward swimming, heave (vertical) motion, and hovering. We used high-speed video (1000 fps) to examine the motion of the entire anal fin and we measured the three-dimensional curvature of four adjacent fin rays in the middle of the fin during each behavior to determine how individual fin rays bend along their length during swimming. Canonical discriminant analysis separated all four behaviors on anal fin kinematic variables and showed that forward and backward swimming behaviors contrasted the most: forward behaviors exhibited a large anterior wavelength and posterior amplitude while during backward locomotion the anal fin exhibited both a large posterior wavelength and anterior amplitude. Heave and hover behaviors were defined by similar kinematic variables; however, for each variable, the mean values for heave motions were generally greater than for hovering. Individual fin rays in the middle of the anal fin curved substantially along their length during swimming, and the magnitude of this curvature was nearly twice the previously measured maximum curvature for ray-finned fish fin rays during locomotion. Fin rays were often curved into the direction of motion, indicating active control of fin ray curvature, and not just passive bending in response to fluid loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号