首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inhibition of thermolysin by an optically active silicon-containing amino acid, 3-trimethylsilylalanine (TMS-Ala), and its derivatives was examined by considering the similarity of structure between TMS-Ala and leucine. Although free l- and d-TMS-Ala did not show the inhibition, several derivatives of l-TMS-Ala, especially Z-l-TMS-Ala and l-Leu-(l-TMS-Ala), exhibited a higher inhibitory activity toward thermolysin than did Z-l-Leu and l-Leu-l-Leu respectively. Effects of TMS-Ala on the activity of its derivatives and the mode of interaction between the derivatives of TMS-Ala and thermolysin are also discussed. Received: 24 February 1999 / Received last revision: 4 June 1999 / Accepted: 27 June 1999  相似文献   

2.
In this study, the enzymatic synthesis of silicon-containing dipeptides with a silicon-containing amino acid, 3-trimethylsilylalanine (TMS-Ala), was attempted in ethyl acetate, and the effects of TMS-Ala on thermolysin-catalyzed dipeptide synthesis are also discussed. Benzyloxycarbonyl(Z)-TMS-Ala was recognized by thermolysin as a better substrate than Z-Leu, and various silicon-containing dipeptides, Z-(TMS-Ala)-Xaa-OMe (Xaa = Leu, Ile, Phe, etc.), could be obtained. The acceleration of the reaction rate in the synthesis of Z-(TMS-Ala)-Leu-OMe compared with Z-Leu-Leu-OMe synthesis was explained by the higher hydrophobicity of the side-chain of TMS-Ala containing a trimethylsilyl group. On the other hand, TMS-Ala-OMe was not accepted as the amino component because of the bulkiness of the trimethylsilyl group. The enantioselectivity of thermolysin was very high. Z-d-TMS-Ala was not a substrate, while Z-l-TMS-Ala served as a good substrate. Received: 5 October 1998 / Received last revision: 4 December 1998 / Accepted: 26 December 1998  相似文献   

3.
New devices for resolution of DL-phenylalanine by an enzymatic method have been developed by using ammonium N-acetyl-DL-phenylalanate as a substrate. In this procedure, crystals of l-phenylalanine and ammonium N-acetyl-d-phenylalanate are separated alternately or simultaneously from reaction mixtures containing acylase, as first crops. The whole resulting solution including acylase can be reused. Ammonium acetate formed as a by-product was found to inhibit the enzyme.  相似文献   

4.
Thermostable N-acylamino acid recemase from Amycolatopsis sp. TS-1-60, a rare actinomycete strain selected for its ability to grow on agar plates incubated at 40° C, was purified to homogeneity and characterized. The relative molecular mass (M r) of the native enzyme and the subunit was estimated to be 300 000 and 40 000 on gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis respectively. The isoelectric point (pI) of the enzyme was 4.2. The optimum temperature and pH were 50° C and 7.5 respectively. The enzyme was stable at 55° C for 30 min. The enzyme catalyzed the racemization of optically active N-acylamino acids such as N-acetyl-l-or d-methionine, N-acetyl-l-valine, N-acetyl-l-tyrosine and N-chloroacetyl-l-valine. In addition, the enzyme also catalyzed the recemization of the dipeptide l-alanyl-l-methionine. By contrast, the optically active amino acids, N-alkyl-amino acids and methyl and athyl ester derivatives of N-acetyl-d- and l-methionine were not racemized. The apparent K m values for N-acetyl-l-methionine and N-acetyl-d-methionine were calculated to be 18.5 mM and 11.3 mM respectively. The enzyme activity was markedly enhanced by the addition of divalent metal ions such as Co2+, Mn2+ and Fe2+ and was inhibited by addition of EDTA and P-chloromercuribenzoic acid. The similarity between the NH2-terminal amino acid sequence of the enzyme and that of Streptomyces atratus Y-53 [Tokuyama et al. (1994) Appl Microbiol Biotechnol 40:835–840] was above 80%.  相似文献   

5.
In this paper we report on the enzymatic preparation of d-p-trimethylsilylphenylalanine (d-TMS-Phe). First, dl-5-(p-trimethylsilylphenylmethyl)hydantoin␣(dl-TMS-Phe-Hyd) was synthesized chemically and subjected to bacterial hydrolysis to obtain N-carbamoyl-d-p-trimethylsilylphenylalanine (C-d-TMS-Phe), but no strains examined showed sufficient hydantoinase activity on this compound. However, Blastobacter sp. A17p-4, which is known to produce N-carbamoyl-d-amino acid amidohydrolase (DCase), was found to be able to hydrolyze C-dl-TMS-Phe prepared chemically from the hydantoin. When C-dl-TMS-Phe was hydrolyzed with cells of Blastobacter sp. A17p-4, its optical purity was low because N-carbamoyl-l-amino acid amidohydrolase (LCase) coexisted in the cells. DCase and LCase in the cell-free extract of Blastobacter sp. A17p-4 could be separated by DEAE-Sephacel column chromatography. The optimum pH for the hydrolysis of C-dl-TMS-Phe by the partially purified DCase was 8.0 and addition of 2.5 % N,N-dimethylformamide was effective in raising the substrate concentration without inactivation of DCase. Under the optimized conditions, highly optically pure (98 % enantiomeric excess) d-TMS-Phe could be obtained from C-dl-TMS-Phe with partially purified DCase. Received: 12 July 1996 / Received revision: 11 September 1996 / Accepted: 2 November 1996  相似文献   

6.
N-Acyl-D-glutamate amidohydrolase (D-AGase) was inhibited by 94 % when 1 mol/l N-acetyl-DL- glutamate was used as a substrate. The addition of 1 mM Co2+ stabilized D-AGase. Moreover, the substrate inhibition was weakened to 88% with the addition of 0.4 mM Co2+ to the reaction mixture. Although D-AGase is a zinc-metalloenzyme, the addition of Zn2+ from 0.01 to 10 mM did not increase the D-glutamic acid production in the saturated substrate. Under optimal conditions, 0.38 M D-glutamic acid was obtained from N-acyl-DL-glutamate with 100% of the theoretical yield after 48 h.  相似文献   

7.
Summary. d-Hydantoinase from Vigna angularis hydrolyzed rac-5-monosubstituted-hydantoins with polar and aromatic side chains and dihydrothymine but rac-5,5-disubstituted-hydantoins were not substrates of this enzyme. 5-Phenylhydantoin was the best substrate. By using this substrate, N-carbamoyl-d-phenylglycine was obtained in quantitative yield and over 98% ee. Received February 17, 2000; Accepted April 4, 2000  相似文献   

8.
A novel enzyme, N-acylamino acid racemase, was purified to homogeneity from Streptomyces atratus Y-53 and characterized. This enzyme catalyzes the interconversion of optically active N-acylamino acids. The relative molecular mass (Mr) of the enzyme was estimated to be about 41 000 and 244 000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, indicating that the enzyme is composed of six subunits with an equal Mr. The enzyme showed a broad substrate specificity toward N-acylamino acids, such as N-acetylmethionine, N-chloroacetylphenylalanine and N-chloroacetylvaline. The apparent Michaelis constant (Km) values for N-acetyl-l-methionine and N-acetyl-d-methionine were calculated to be 15.2 and 5.6 mm, respectively. Enzyme activity was markedly enhanced by divalent metal ions, such as Co2+, Mg2+ and Mn2+, and was inhibited by metal-chelating reagent, indicating that the enzyme is a metalloenzyme. We propose to name the enzyme N-acylamino acid racemase (acylamino acid racemase). Correspondence to: S. Tokuyama  相似文献   

9.
 The effect of the addition of oleuropein (OLP) and NaCl on the growth and the DL-lactic acid production of Lactobacillus plantarum DSM 10492 has been investigated by using an unconventional medium. The growth of L. plantarum was not inhibited by the addition of increasing amounts of untreated OLP in the presence or absence of glucose. However, bacterial cells grew in quantity slightly with OLP alone. The increased addition of NaCl was associated with a delay in growth. Moreover, there was no growth with 8% NaCl. The addition of both NaCl and OLP resulted in growth inhibition, and the survival of cells decreased strongly. The main fermentation product was DL-lactic acid, but acetic acid was also detected after a prolonged incubation. L. plantarum produced DL-lactic acid in the presence of OLP alone but its formation decreased with increasing levels of OLP. On the other hand, heat-treated OLP had a bactericidal effect. Received: 16 October 1995/Received last revision: 5 February 1996/Accepted: 12 February 1996  相似文献   

10.
A novel bacterial strain producing D-aminoacylase was isolated from organic waste and identified as Stenotrophomonas maltophilia ITV-0595. The isolation was performed using N-acetyl-D-phenylglycine (NAcDPG) as the sole source of C and N. The optimum pH for enzyme expression was 8 at 37°C. Using N-Ac-DPG concentrations from 0.5 up to 3% w/v, it was observed that at the 1% level, the microorganism showed acceptable responses in both enzyme activities and cell growth. From the different tested compounds N-acetyl-D-methionine (1%) was the best enzyme inducer (Sp. act. = 4.14 U mg−1 protein, Vol. act. = 0.17 U ml−1) and the only one that increased cell growth. Received 13 June 1997/ Accepted in revised form 29 October 1998  相似文献   

11.
Penicillin G acylase (PGA) from Kluyvera citrophila immobilized on Amberzyml was used for enantioselective hydrolysis of N-phenylacetylated-dl-tert-leucine (N-Phac-dl-Tle) to produce l-tert-leucine (l-Tle). The effects of various organic cosolvents on hydrolysis of N-Phac-dl-Tle have been investigated in aqueous-cosolvent medium. It was founded that the rate of PGA-catalyzed reaction was significantly affected by the presence of 2% (v/v) organic cosolvent concentration. The initial rate fell with increasing logP of the cosolvent, but for logP values less than −0.24 the rate was faster than in purely aqueous medium. Additionally, the relative rate increases with the increase of dielectric constant (ε) of organic cosolvents. The yields of l-Tle in all aqueous-cosolvent systems were above 95% with the enantiomeric excess (ee) of >99%.  相似文献   

12.
We have demonstrated that Penicillium chrysogenum possesses the l-cysteine biosynthetic enzyme O-acetyl-l-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates the potential for increasing the overall yield in penicillin production by enhancing the enzymatic activity of this microorganism. Only O-acetyl-l-serine sulphhydrylase and O-acetyl-l-homoserine sulphhydrylase (EC 4.2.99.10) have been demonstrated to use O-acetyl-l-serine as substrate for the formation of l-cysteine. The purified␣enzyme did not catalyse the formation of l-homocysteine from O-acetyl-l-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyl-l-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold in relation to the cell-free extract. Two bands, showing exactly the same intensity, were present on a sodium dodecyl sulphate/polyacrylamide gel, and the molecular masses of these were estimated to be 59 kDa and 68 kDa respectively. The K m value for O-acetyl-l-serine and V max of O-acetyl-l-serine sulphhydrylase were estimated to be 1.3 mM and 14.9 μmol/mg protein−1 h−1 respectively. The activity of the purified enzyme had a temperature optimum of approximately 45 °C, which is much higher than the actual temperature for penicillin synthesis. Furthermore, O-acetyl-l-serine sulphhydrylase activity was to have a maximum in the range of pH 7.0–7.4. Received: 20 March 1998 / Received revision: 27 July 1998 / Accepted: 12 August 1998  相似文献   

13.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

14.
Summary A bacterium that stereospecifically produces D-p-hydroxyphenylglycine (D-PHPG) from DL-5-p-hydroxyphenylhydantoin (DL-5-PHPH) was isolated from soil and identified as Agrobacterium sp. IP-I 671. The hydantoinase and the N-carbamyl-amino acid amido-hydrolase involved in this biotransformation process were both strictly D-stereospecific. Their biosynthesis was found to be inducible by addition of 2-thiouracil to the cultivation media, or to a lesser extent by uracil. The amidohydrolase activity of Agrobacterium sp. was strongly inhibited by ammonium ions co-produced with D-PHPG, whereas the hydantoinase activity under the same conditions was unaffected. Optimum temperature and pH were respectively 55° C and 10 for the partially purified hydantoinase, 45° and 6.75 when resting cells were used. Biotransformation under these slightly acidic conditions allowed to complete conversion of 30 g/1 DL-5-PHPH into 25 g/l of D-PHPG (molar yield 96%) and involved enzymatic racemization of DL-5-PHPH. Offprint requests to: S. Runser  相似文献   

15.
About 1000 bacterial colonies isolated from sea water were screened for their ability to convert dl-5-phenylhydantoin to d(−)N-carbamoylphenylglycine as a criterion for the determination of hydantoinase activity. The strain M-1, out of 11 hydantoinase-producing strains, exhibited the maximum ability to convert dl-5-phenylhydantoin to d(−)N-carbamoylphenylglycine. The strain M-1 appeared to be a halophilic Pseudomonas sp. according to morphological and physiological characteristics. Optimization of the growth parameters revealed that nutrient broth with 2% NaCl was the preferred medium for both biomass and enzyme production. d-Hydantoinase of strain M-1 was not found to be inducible by the addition of uracil, dihydrouracil, β-alanine etc. The optimum temperature for enzyme production was about 25 °C and the organism showed a broad pH optimum (pH 6.5–9.0) for both biomass and hydantoinase production. The organism seems to have a strict requirement of NaCl for both growth and enzyme production. The optimum pH and temperature of enzyme activity were 9–9.5 and 30 °C respectively. The biotransformation under the alkaline conditions allowed the conversion of 80 g l−1 dl-5-phenylhydantoin to 82 g l−1 d(−)N-carbamoylphenylglycine within 24 h with a molar yield of 93%. Received: 15 September 1997 / Received revision: 5 January 1998 / Accepted: 6 January 1998  相似文献   

16.
A DNA sequence encodingN-acylamino acid racemase (AAR) was inserted downstream from the T7 promoter in pET3c. The recombinant plasmid was introduced intoEscherichia coli MM194 lysogenized with a bacteriophage having a T7 RNA polymerase gene. The amount of AAR produced by theE. coli transformant was 1100-fold more than that produced byAmycolatopsis sp. TS-1-60, the DNA donor strain. The AAR was purified to homogeneity from the crude extract of theE. coli transformant by two steps: heat treatment and Butyl-Toyopearl column chromatography. Bioreactors for the production of optically active amino acids were constructed with DEAE-Toyopearl-immobilized AAR andd- orl-aminoacylase.d- orl-methionine was continuously produced with a high yield fromN-acetyl-dc-methionine by the bioreactor.  相似文献   

17.
Summary A new acylase catalyzing the deacetylation of acetamidocinnamic acid (ACA) was found in strains of Brevibacterium sp. Such strains could be isolated from soil samples by their ability to grow on ACA as well as on l-phenylalanine. A 110-fold enrichment of the enzyme with an over-all yield of 48% was obtained in 4 steps resulting in an electrophoretically pure preparation of 28.6 U·mg-1. Important enzymological data concerning the application of the enzyme are: K M (ACA) 0.45 mM, pH-optimum 7.5, heat stability up to 52°C, molecular weight of 50.000 Dalton, two subunits. Deacetylation of ACA resulted in phenylpyruvate via the unstable enamine-imine derivative. Coupling the acylase with l-phenylalanine dehydrogenase proved to be an alternative route for l-phenylalanine production avoiding substrate inhibition by phenylpyruvate and its instability. The substrate specifity of ACA-acylase revealed that the enzyme probably acts as a dipeptidase in its biological function.Abbreviations ACA acetamidocinnamate, acetamidocinnamic acid - FPLC fast protein liquid chromatography - pheDH l-Phenylalanine dehydrogenase - HicDH Hydroxyisocaproate dehydrogenase - OD optical density - BSA bovine serum albumin - FDH formate dehydrogenase Dedicated to Professor Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

18.
We have developed an enzymatic procedure for the enantiospecific synthesis ofN-acetyl-l-methionine with aminoacylase in an organic solvent.N-Acetyl-l-methionine was most effectively synthesized with a yield of about 90% (on the basis of thel-methionine used) when the reaction mixture, composed of 100 mm sodium acetate, 20 MMdl-methionine and aminoacylase (1000 units) immobilized on celite in 1 ml ethyl acetate saturated with 32 l 140mm sodium phosphate buffer (pH 7.0) containing 0.1 mm CoCl2, was incubated at 30°C for 24 h.N-Acetyl-l-methionine was isolated from the reaction mixture and the enantiomeric excess was 100%.d-Methionine was also isolated from the mixture with a yield of about 95% and 90% enantiomeric excess. The method is applicable to the synthesis of otherN-acetyl-l-amino acids.  相似文献   

19.
A bacterium, Aeromonas sp. GJ-18, having strong chitinolytic activity was isolated from coastal soil and used for crude enzyme preparations. This enzyme preparation contained N-acetyl-D-glucosaminidase and N,N-diacetylchitobiohydrolase. N-Acetyl-D-glucosaminidase was inactive above 50 °C, but N,N-diacetylchitobiohydrolase was stable at this temperature. Utilizing the temperature sensitivities of the chitin degradation enzymes in crude enzyme preparation, N-acetyl-D-glucosamine (GlcNAc) and N,N-diacetylchitobiose [(GlcNAc)2] were selectively produced from chitin. At 45 °C, GlcNAc was produced as a major hydrolytic product (94% composition) with a yield of 74% in 5 d, meanwhile at 55 °C (GlcNAc)2 was the major product (86%) with a yield of 35% within 5 d.Revisions requested 29 September 2004; Revisions received 1 November 2004  相似文献   

20.
N-Acetyl-d-neuraminic acid (Neu5Ac) is a precursor for producing many pharmaceutical drugs such as zanamivir which have been used in clinical trials to treat and prevent the infection with influenza virus, such as the avian influenza virus H5N1 and the current 2009 H1N1. Two recombinant Escherichia coli strains capable of expressing N-acetyl-d-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid aldolase were constructed based on a highly efficient temperature-responsive expression system which is safe compared to chemical-induced systems and coupled in Neu5Ac production. Carbon sources were optimized for Neu5Ac production, and the concentration effects of carbon sources on the production were investigated. With 2,200 mM pyruvate as carbon source and substrate, 61.9 mM (19.1 g l−1) Neu5Ac was produced from 200 mM N-acetyl-d-glucosamine (GlcNAc) in 36 h by the coupled cells. Our Neu5Ac biosynthetic process is favorable compared with natural product extraction, chemical synthesis, or even many other biocatalysis processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号