首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eggs must be the major locus of reproductive aging in women, because donation of eggs from younger to middle-aged women abrogates the effects of age on fertility. Oxidative stress, mitochondrial dysfunction, and apoptosis are associated with senescence. To develop an animal model of egg senescence, we treated mouse zygotes with 175 microM H(2)O(2) that induced mitochondrial dysfunction and developmental arrest, followed by delayed cell death, consistent with apoptosis. We reconstructed zygotes with nuclei and cytoplasm from treated or untreated zygotes, then followed development and apoptotic cell death in the reconstituted embryos. Pronuclear exchange between untreated, normal zygotes served as nuclear transfer controls. Rates of cleavage and development to morula and blastocysts were significantly lower (P<0.01) in zygotes reconstituted from untreated pronuclei and H(2)O(2)-stressed cytoplasts than those of nuclear transfer controls. Instead, the arrested, reconstituted zygotes displayed TUNEL staining at a similar rate to that of H(2)O(2)-treated controls, suggesting that apoptotic potential could be transferred cytoplasmically. On the other hand, rates of cleavage and development to morula and blastocyst of the reconstituted zygotes, derived from stressed pronuclei and untreated cytoplasm, were significantly increased (P<0.05), compared to those of H(2)O(2)-treated, control zygotes, indicating that healthy cytoplasm could partly rescue pronuclei from oxidative stress. Although oxidation stressed both nuclei and cytoplasm, cytoplasm was more sensitive than nuclei to oxidative stress. It is suggested that cytoplasm, most likely mitochondria, plays a central role in mediating both development and apoptotic cell death induced by oxidative stress in mouse zygotes.  相似文献   

2.
Programmed cell death (apoptosis) occurs in nearly all cell types examined, including mammalian oocytes and embryos, where it may underlie some forms of infertility in humans. Although the molecular machinery participating in apoptosis have been intensely investigated, the accompanying physiological changes have not received similar attention. In this study, a novel electrophysiology technique has been employed to monitor real-time perturbations in the physiology of mouse embryos undergoing apoptosis evoked by hydrogen peroxide, diamide, and staurosporine. Despite differences in their mode of action, these agents evoked a similar early change in cellular physiology; namely, a pronounced, transient, potassium efflux through tetraethylammonium-sensitive potassium channels accompanied by cell shrinkage. Mouse zygotes exposed to 200 microM H(2)O(2) exhibited potassium efflux that elevated the potassium concentration of the media surrounding embryos by 1.4 +/- 0.1 microM. Pretreatment with tetraethylammonium inhibited this increase (0.2 +/- 0.1 microM). Our results indicate that potassium efflux through potassium channels and concurrent cell shrinkage are early indicators of cell death in embryos and that noninvasive measurements of potassium pathophysiology may identify embryos undergoing cell death prior to the manifestation of other morphological or molecular hallmarks of cell death.  相似文献   

3.
We have studied the effects of different concentrations of H(2)O(2) on the proliferation of PC-3 prostate carcinoma cells. Since this cell line lacks functional p53, we sought to characterize whether apoptotic response to the oxidative insult was altered such that, unlike in cells containing functional p53 apoptosis may be reduced and replaced by other mechanisms of cellular arrest and death. We did not observe necrosis in PC-3 cells treated with H(2)O(2) concentrations of up to 500 microM. In the presence of 50 microM H(2)O(2), arrest was observed in the G2-phase of the cell cycle, along with p53-independent apoptosis. In the presence of 500 microM H(2)O(2), addition of l-buthionine sulfoximine increased the percentage of apoptotic cell death. Senescence-associated cell arrest was never observed. Moreover, some of the treated cells seemed to be resistant to oxidative damage. These cells re-entered the cell cycle and proliferated normally. Analysis of the expression of p21(waf1) and of p21 protein levels, as well as the activity of caspase-3 and caspase-8, allowed us to characterize some aspects of the arrest of PC-3 cells in G2 and the apoptotic response to oxidative stress in the absence of functional p53.  相似文献   

4.

Background

We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells).

Results

MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells.

Conclusion

Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.  相似文献   

5.
We studied the effects of apigenin on the cell cycle distribution and apoptosis of human breast cancer cells and explored the mechanisms underlying these effects. We first investigated the antiproliferative effects in SK-BR-3 cells exposed to between 1 and 100 microM apigenin for 24, 48 and 72 h. Apigenin significantly inhibited cell proliferation at concentrations over 50 microM, regardless of exposure time (P<.05), and resulted in significant cell cycle arrest in the G(2)/M phase after 48 h of treatment at high concentrations (50 and 100 microM; P<.05). To investigate the regulatory proteins of cell cycle arrest affected by apigenin, we treated cells with 50 and 100 microM apigenin for 72 h. Apigenin caused a slight decrease in cyclin D and cyclin E expression, with no change in CDK2 and CDK4. In addition, the apigenin-induced accumulation of the cell population in the G(2)/M phase resulted in a decrease in CDK1 together with cyclin A and cyclin B. In an additional study, apigenin also increased the accumulation of p53 and further enhanced the level of p21(Cip1), with no change in p27(Kip1). The expression of Bax and cytochrome c of p53 downstream target was increased markedly at high concentration treatment over 50 microM apigenin. Based on our findings, the mechanism by which apigenin causes cell cycle arrest via the regulation of CDK1 and p21(Cip1) and induction of apoptosis seems to be involved in the p53-dependent pathway.  相似文献   

6.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

7.
This study investigated the embryotrophic effects of ethylenediaminetetraacetic acid (EDTA) and hemoglobin (Hb) on porcine preimplantation embryo development. Porcine embryos produced by in vitro maturation/fertilization were cultured for 6 days in modified North Carolina State University-23 medium (mNCSU-23) supplemented with EDTA and/or Hb. In Exp. 1, culturing porcine zygotes with 100 microM EDTA significantly increased cleavage frequencies (85.3%) at 48 h post insemination and the number of inner cell mass (ICM) (9.6+/-5.5) compared to the control (7.0+/-2.8). However, 100 microM EDTA did not improve blastocyst formation compared to 0, 1 or 10 microM EDTA. In Exp. 2, in vitro fertilized oocytes were cultured with 0, 1 or 10 microg/ml Hb. Culturing with Hb did not promote porcine embryo development, but significantly increased the cell numbers of blastocysts in 1 microg/ml Hb compared to 0 or 10 microg/ml Hb. In Exp. 3, culturing embryos with 100 microM EDTA+1 microg/ml Hb significantly improved frequencies of cleavage, blastocyst formation, and total cell numbers in blastocysts compared to the control. Moreover, 100 microM EDTA, 1 microg/ml Hb and their combination reduced reactive oxygen species (ROS) accumulation and decreased the incidence of apoptosis. In conclusion, the present study clearly demonstrated that the combining treatment of EDTA and Hb improved IVF porcine embryo development.  相似文献   

8.
R Jorquera  R M Tanguay 《FASEB journal》1999,13(15):2284-2298
Hereditary tyrosinemia type I is the most severe metabolic disease of the tyrosine catabolic pathway mainly affecting the liver. It is caused by deficiency of fumarylacetoacetate hydrolase, which prevents degradation of the toxic metabolite fumarylacetoacetate (FAA). We report here that FAA induces common effects (i.e., cell cycle arrest and apoptosis) in both human (HepG2) and rodent (Chinese hamster V79) cells, effects that seem to be temporally related. Both the antiproliferative and apoptosis-inducing activities of FAA are dose dependent and enhanced by glutathione (GSH) depletion with L-buthionine-(S,R)-sulfoximine (BSO). Short treatment (2 h) with 35 microM FAA/+BSO or 100 microM FAA/-BSO induced a transient cell cycle arrest at the G2/M transition (20% and 37%, respectively) 24 h post-treatment. In cells treated with 100 microM FAA/-BSO, an inactivation, followed by a rapid over-induction of cyclin B-dependent kinase occurred, which peaked 24 h post-treatment. Maximum levels of caspase-1 and caspase-3 activation were detected at 3 h and 32 h, respectively, whereas release of mitochondrial cytochrome c was maximal at 24-32 h post-treatment. The G2/M peak declined 24 h later, concomitantly with the appearance of a sub-G1, apoptotic population showing typical nucleosomal-sized DNA fragmentation and reduced mitochondrial transmembrane potential (Deltapsi(m)). These events were prevented by the general caspase inhibitor z-VAD-fmk, whereas G2/M arrest and subsequent apoptosis were abolished by GSH-monoethylester or N-acetylcysteine. Other tyrosine metabolites, maleylacetoacetate and succinylacetone, had no antiproliferative effects and induced only very low levels of apoptosis. These results suggest a modulator role of GSH in FAA-induced cell cycle disturbance and apoptosis where activation of cyclin B-dependent kinase and caspase-1 are early events preceding mitochondrial cytochrome c release, caspase-3 activation, and Deltapsi(m) loss. -Jorquera, R., Tanguay, R. M. Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis.  相似文献   

9.
Cyclosporin A (CsA) is a potent immunosuppressive agent, and can cause severe adverse effects including nephrotoxicity partly due to generation of reactive oxygen species (ROS). Glucocorticoids, which are widely used in combination with CsA, have been shown to reduce oxidative injuries in various cells, but its mechanism is not understood well. To investigate the effects of prednisolone (Pd) on CsA-induced cellular damage and ROS generation in Madin-Darby canine kidney (MDCK) tubular epithelial cells, cells were treated with CsA, CsA plus Pd, or CsA plus vitamin E. Pretreatment with Pd protected cells from CsA-induced apoptosis but not from G(0)/G(1) cell cycle arrest even at its maximal protective concentration (30 microM), whereas vitamin E almost completely inhibited both CsA-induced apoptosis and cell cycle arrest at 1 microM concentration. In addition, Pd reduced the amount of CsA-induced ROS and showed partly restored catalase which was down-regulated by 10 microM CsA at both the mRNA and protein levels. Vitamin E completely abolished CsA-induced ROS generation and catalase attenuation at 10 microM concentration. Finally, the effects of 1 microM vitamin E on CsA-induced ROS and apoptosis as well as cell cycle arrest were similar to those of 30 microM Pd. We conclude that, in MDCK cells, Pd protects against CsA-induced cytotoxicity by suppressing ROS generation, although its protective effect is weaker than that of vitamin E.  相似文献   

10.
Effect of cadmium on cell cycle progression in Chinese hamster ovary cells   总被引:4,自引:0,他引:4  
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest.  相似文献   

11.
Apoptosis in the early bovine embryo   总被引:7,自引:0,他引:7  
  相似文献   

12.
We analyzed the effect of in vitro aging of mouse oocytes in the presence of dithiothreitol (DTT) on relative levels of glutathione S-transferase (GST) activity and thiols in oocytes, and cell number, DNA fragmentation and cellular allocation to the inner cell mass (ICM) and trophectoderm (TE) lineage at the blastocyst stage. Ovulated oocytes from gonadotropin primed hybrid female mice of 6-8 weeks of age were aged in vitro in the presence of 0, 5, 50, or 500 microM DTT for 6 hr prior to insemination. Relative levels of GST activity and thiols in oocytes were determined by confocal laser scanning microscopy, DNA fragmentation using a single-step TUNEL method, and cell allocation to the ICM and TE lineage by blastocyst staining with propidium iodide and Hoechst 33258. Non-aged oocytes exhibited higher relative levels of GST activity and thiols when compared to oocytes aged in the presence of 0, 5, and 50 microM DTT. Day 5 blastocysts from the 5, 50, and 500 microM DTT groups exhibited higher total number of cells, number of ICM cells, and ICM/TE ratio, but lower percentage of number of nuclei with DNA fragmentation/number of ICM cells than blastocyst from the 0 microM DTT group. These data show that DTT counteracts the negative effects of a post-ovulatory aging of mouse oocytes in vitro on relative levels of GST activity and thiols in oocytes, and percentage of number of nuclei with DNA fragmentation/number of ICM cells, total number of cells, number of ICM cells and ICM/TE ratio in Day 5 blastocysts.  相似文献   

13.
As an assisted reproduction technology, vitrification has been widely used for oocyte and embryo cryopreservation. Many studies have indicated that vitrification affects ultrastructure, gene expression, and epigenetic status. However, it is still controversial whether oocyte vitrification could induce DNA damage in metaphase II (MII) oocytes and the resulting early embryos. This study determined whether mouse oocytes vitrification induce DNA damage in MII oocytes and the resulting preimplantation embryos, and causes for vitrification‐induced DNA damage. The effects of oocyte vitrification on reactive oxygen species (ROS) levels, γ‐H2AX accumulation, apoptosis, early embryonic development, and the expression of DNA damage‐related genes in early embryos derived by in vitro fertilization were examined. The results indicated that vitrification significantly increased the number of γ‐H2AX foci in zygotes and two‐cell embryos. Trp53bp1 was upregulated in zygotes, two‐cell embryos and four‐cell embryos in the vitrified group, and Brca1 was increased in two‐cell embryos after vitrification. Vitrification also increased the ROS levels in MII oocytes, zygotes, and two‐cell embryos and the apoptotic rate in blastocysts. Resveratrol (3,5,4′‐trihydroxystilbene) treatment decreased the ROS levels and the accumulation of γ‐H2AX foci in zygotes and two‐cell embryos and the apoptotic rate in blastocysts after vitrification. Overall, vitrification‐induced abnormal ROS generation, γ‐H2AX accumulation, an increase in the apoptotic rate and the disruption of early embryonic development. Resveratrol treatment could decrease ROS levels, γ‐H2AX accumulation, and the apoptotic rate and improve early embryonic development. Vitrification‐associated γ‐H2AX accumulation is at least partially due to abnormal ROS generation.  相似文献   

14.
Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.  相似文献   

15.
Therapeutic nucleoside analogue 3-deazauridine (DU) exerts cytotoxic activity against cancer cells by disruption of DNA synthesis resulting in cell death. The present study evaluates whether DU alone at doses 2.5-15 microM or in combination with all trans retinoic acid (RA) or dibutyryl cAMP (dbcAMP) is effective against myelogenous leukemia. The data of this study indicate that DU induces dose-dependent cell death by apoptosis in myeloid leukemia cell lines HL-60, NB4, HEL and K562 as demonstrated by cell staining or flow cytometry and agarose gel electrophoresis. 24h-treatment with DU produced dose-dependent HL-60 cell growth inhibition and dose-independent S phase arrest that was not reversed upon removal of higher doses of DU (10-15 microM). Exposition to nontoxic dose of DU (2.5 microM) for 24h followed by RA or dbcAMP and 96 h-cotreatment with DU significantly enhanced RA- but not dbcAMP-mediated granulocytic differentiation. Cell maturation was paralleled with an increase in the proportion of cells in G1 or G2+M phase. We conclude that, depending on the dose or the sequence of administration with RA, an inhibitor of DNA replication, DU triggers a process of either differentiation or apoptosis in myeloid leukemia cells.  相似文献   

16.
Most squamous epithelial cells are strictly anchorage-dependent cell types. We observed that epidermal growth factor (EGF) promoted the growth of A431 squamous carcinoma cells in suspension cultures but suppressed cell growth and induced apoptosis in monolayer cultures, suggesting that loss of adhesion is responsible for the effects observed in monolayer culture, before cell death. Consistent with this finding, we demonstrated that EGF reduced cell attachment, cell-cell interaction, and cell spreading. Treatment with EGF increased cell adhesion-regulated expression of p21 but suppressed expressions of cyclin A, D1, cdk2, and retinoblastoma protein (pRb), leading to cell cycle arrest and adhesion-regulated programmed cell death. To test directly whether promoting cell adhesion could reduce the effects of EGF, we grew cultures on plates coated with type II collagen. On these plates, cell adhesion was enhanced and EGF treatment had little effect on cell adhesion and apoptosis when cells were attached to the collagen. The collagen effects were dose dependent, and cell cycle and cell cycle-associated proteins were altered accordingly. Finally, when cultures were plated on bacterial Petri dishes, which completely disrupted cell attachment to substratum, the level of apoptosis was greatly higher and cell cycle was arrested as compared with monolayer cultures. Taken together, our results strongly suggest that the EGF-induced cell cycle arrest and apoptosis in monolayer cultures was the result of a decline in cell adhesion.  相似文献   

17.
The mechanisms by which cells undergo proliferation arrest or cell death in response to hypoxia are still not completely understood. Originally, we showed that HeLa and Hep3B carcinoma cells undergo different proliferation responses in hypoxia. We now show that these 2 cell lines also have different cell death responses to severe hypoxia, with HeLa showing both cell cycle arrest and apoptosis (as early as 12 h after hypoxia treatment), and Hep3B showing resistance to both. Hypoxia-induced apoptosis in Hela was associated with decreases of both phospho-S473- and -T308-AKT and loss of AKT function, whereas Hep3B cells were resistant to hypoxia-induced apoptosis and did not lose phospho-AKT or AKT function. We then decided to test if our observations were confirmed using a hypoxia mimic, desferoxamine. Desferoxamine treatment yielded cell cycle arrest in HeLa and moderate arrest in Hep3B but, surprisingly, did not induce notable apoptosis of either cell line with up to 24 h of treatment. Hypoxia-treated normal human mammary epithelial cells also showed hypoxia-induced apoptosis. Interestingly, in these cell lines, there was a complete correlation between loss of phospho-AKT and (or) total AKT, and susceptibility to hypoxia-induced apoptosis. Our data suggests a model in which regulated loss of active AKT at a precise time point in hypoxia may be associated with apoptosis in susceptible cells.  相似文献   

18.
Choi EJ  Kim T  Lee MS 《Life sciences》2007,80(15):1403-1408
We investigated the effects of genistein and genistin on proliferation and apoptosis of human ovarian SK-OV-3 cells and explored the mechanism for these effects. SK-OV-3 cells were treated with genistein and genistin at various concentrations (ranging from 1 to 100 muM) either alone or in combination for 24 and 48 h. Cell proliferation was estimated using an MTT assay, and cell cycle arrest was evaluated using FACS. Caspase-3 activity and annexin-based cell cycle analysis were used as measures of apoptosis. In addition, genistein- and genistin-induced cytotoxicity was determined by measuring release of LDH. Genistein treatment for 24 or 48 h substantially inhibited SK-OV-3 cell proliferation in a dose-dependent manner, and genistin treatment for 48 h also inhibited cell proliferation. Genistein caused cell cycle arrest at G2/M phase in dose- and time-dependent manner, and genistin caused cell cycle arrest not only at G2/M phase but also at G1 phase. Genistein markedly induced apoptosis and significantly increased LDH release, whereas genistin did not affect LDH release. Moreover, exposure to both genistein and genistin in combination for 48 h induced apoptosis without increasing LDH release. Genistein and genistin inhibit cell proliferation by disrupting the cell cycle, which is strongly associated with the arrest induction of either G1 or G2/M phase and may induce apoptosis. Based on our findings, we speculate that both genistein and genistin may prove useful as anticancer drugs and that the combination of genistein and genistin may have further anticancer activity.  相似文献   

19.

Background

Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of HDAC inhibitors (HDACIs) tailored to the treatment of pancreatic cancer.

Methodology

HDAC expression in seven pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was determined by Western blotting. Antitumor interactions between class I- and class II-selective HDACIs were determined by MTT assays and standard isobologram/CompuSyn software analyses. The effects of HDACIs on cell death, apoptosis and cell cycle progression, and histone H4, alpha-tubulin, p21, and γH2AX levels were determined by colony formation assays, flow cytometry analysis, and Western blotting, respectively.

Results

The majority of classes I and II HDACs were detected in the pancreatic cancer cell lines, albeit at variable levels. Treatments with MGCD0103 (a class I-selective HDACI) resulted in dose-dependent growth arrest, cell death/apoptosis, and cell cycle arrest in G2/M phase, accompanied by induction of p21 and DNA double-strand breaks (DSBs). In contrast, MC1568 (a class IIa-selective HDACI) or Tubastatin A (a HDAC6-selective inhibitor) showed minimal effects. When combined simultaneously, MC1568 significantly enhanced MGCD0103-induced growth arrest, cell death/apoptosis, and G2/M cell cycle arrest, while Tubastatin A only synergistically enhanced MGCD0103-induced growth arrest. Although MC1568 or Tubastatin A alone had no obvious effects on DNA DSBs and p21 expression, their combination with MGCD0103 resulted in cooperative induction of p21 in the cells.

Conclusion

Our results suggest that classes I and II HDACs are potential therapeutic targets for treating pancreatic cancer. Accordingly, treating pancreatic cancer with pan-HDACIs may be more beneficial than class- or isoform-selective inhibitors.  相似文献   

20.
Concentrations of rotenone (ROT) that block electron flow through mitochondrial complex I (100 nM) did not significantly alter either cell viability or the growth of PW cells. However, 10- to 50-fold higher concentrations (1-5 microM) were found to induce a dose-dependent cell cycle arrest predominantly at the G2/M stage of the cycle and apoptosis. Apoptosis was dependent on the cell cycle arrest, since apoptosis but not the G2/M arrest was prevented with the broad spectrum caspase inhibitor zVADfmk. Biochemical features of apoptosis included mitochondrial cytochrome c release, reactive oxygen species generation, and the activation of procaspase 3. Thus, ROT inhibition of mitochondrial electron transport may be insufficient to induce apoptosis in PW cells. Instead, apoptosis in these cells occurs as a consequence of disruption of the cell cycle and is only indirectly dependent upon mitochondrial electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号