首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gene products that promote mRNA turnover in Saccharomyces cerevisiae.   总被引:15,自引:9,他引:15       下载免费PDF全文
We showed previously that the increased rate of mRNA turnover associated with premature translational termination in the yeast Saccharomyces cerevisiae requires a functional UPF1 gene product. In this study, we show that the UPF1 gene codes for a 109-kDa primary translation product whose function is not essential for growth. The protein contains a potential zinc-dependent nucleic acid-binding domain and a nucleoside triphosphate-binding domain. A 300-amino-acid segment of the UPF1 protein is 36% identical to a segment of the yeast SEN1 protein, which is required for endonucleolytic processing of intron-containing pre-tRNAs. The same region is 32% identical to a segment of Mov-10, a mouse protein of unknown function. Dominant-negative upf1 mutations were isolated following in vitro mutagenesis of a plasmid containing the UPF1 gene. They mapped exclusively at conserved positions within the sequence element common to all three proteins, whereas the recessive upf1-2 mutation maps outside this region. The clustering of dominant-negative mutations suggests the presence of a functional domain in UPF1 that may be shared by all three proteins. We also identified upf mutations in three other genes designated UPF2, UPF3, and UPF4. When alleles of each gene were screened for effects on mRNA accumulation, we found that the recessive mutation upf3-1 causes increased accumulation of mRNA containing a premature stop codon. When mRNA half-lives were measured, we found that excess mRNA accumulation was due to mRNA stabilization. On the basis of these results, we suggest that the products of at least two genes, UPF1 and UPF3, are responsible for the accelerated rate of mRNA decay associated with premature translational termination.  相似文献   

3.
Potential DNA replication accessory factors from the yeast Saccharomyces cerevisiae have previously been identified by their ability to bind to DNA polymerase alpha protein affinity matrices (J. Miles and T. Formosa, Proc. Natl. Acad. Sci. USA 89:1276-1280, 1992). We have now used genetic methods to characterize the gene encoding one of these DNA polymerase alpha-binding proteins (POB1) to determine whether it plays a role in DNA replication in vivo. We find that yeast cells lacking POB1 are viable but display a constellation of phenotypes indicating defective DNA metabolism. Populations of cells lacking POB1 accumulate abnormally high numbers of enlarged large-budded cells with a single nucleus at the neck of the bud. The average DNA content in a population of cells lacking POB1 is shifted toward the G2 value. These two phenotypes indicate that while the bulk of DNA replication is completed without POB1, mitosis is delayed. Deleting POB1 also causes elevated levels of both chromosome loss and genetic recombination, enhances the temperature sensitivity of cells with mutant DNA polymerase alpha genes, causes increased sensitivity to UV radiation in cells lacking a functional RAD9 checkpoint gene, and causes an increased probability of death in cells carrying a mutation in the MEC1 checkpoint gene. The sequence of the POB1 gene indicates that it is identical to the CTF4 (CHL15) gene identified previously in screens for mutations that diminish the fidelity of chromosome transmission. These phenotypes are consistent with defective DNA metabolism in cells lacking POB1 and strongly suggest that this DNA polymerase alpha-binding protein plays a role in accurately duplicating the genome in vivo.  相似文献   

4.
We mapped and cloned SKI7, a gene that negatively controls the copy number of L-A and M double-stranded RNA viruses in Saccharomyces cerevisiae. We found that it encodes a nonessential 747-residue protein with similarities to two translation factors, Hbs1p and EF1-alpha. The ski7 mutant was hypersensitive to hygromycin B, a result also suggesting a role in translation. The SKI7 product repressed the expression of nonpolyadenylated [non-poly(A)] mRNAs, whether capped or uncapped, thus explaining why Ski7p inhibits the propagation of the yeast viruses, whose mRNAs lack poly(A). The dependence of the Ski7p effect on 3' RNA structures motivated a study of the expression of capped non-poly(A) luciferase mRNAs containing 3' untranslated regions (3'UTRs) differing in length. In a wild-type strain, increasing the length of the 3'UTR increased luciferase expression due to both increased rates and duration of translation. Overexpression of Ski7p efficiently cured the satellite virus M2 due to a twofold-increased repression of non-poly(A) mRNA expression. Our experiments showed that Ski7p is part of the Ski2p-Ski3p-Ski8p antiviral system because a single ski7 mutation derepresses the expression of non-poly(A) mRNA as much as a quadruple ski2 ski3 ski7 ski8 mutation, and the effect of the overexpression of Ski7p is not obtained unless other SKI genes are functional. ski1/xrn1Delta ski2Delta and ski1/xrn1Delta ski7Delta mutants were viable but temperature sensitive for growth.  相似文献   

5.
6.
Nonsense-mediated mRNA decay in Saccharomyces cerevisiae.   总被引:11,自引:0,他引:11  
  相似文献   

7.
We have isolated a dominant suppressor of rna mutation (SRN1) that relieves the temperature-sensitive inhibition of mRNA synthesis of ribosomal protein genes in the yeast Saccharomyces cerevisiae. The suppressor was selected for its ability to alleviate simultaneously the temperature-sensitive growth phenotypes of rna2 and rna6. Several independently isolated suppressors appeared to be recessive lethal mutations. One suppressor, SRN1, was recovered as viable in haploid strains. SRN1 can suppress rna2, rna3, rna4, rna5, rna6, and rna8 singly or in pairs, although some combinations of rna mutations are less well suppressed than others. The suppressor allows strains with rna mutations to grow at 34 degrees C but is unable to suppress at 37 degrees C; however, SRN1 does not, by itself, prevent growth at 37 degrees C. In addition, SRN1 suppresses the rna1 mutation which affects general mRNA levels and also leads to the accumulation of precursor tRNA for those tRNAs that have intervening sequences. SRN1 can suppress the rna1 mutation as well as the rna1 rna2 double mutation at 34 degrees C. The suppressor does not affect the temperature-sensitive growth of two unrelated temperature-sensitive mutations, cdc4 and cdc7.  相似文献   

8.
Both terminators and promoters regulate gene expression. In Saccharomyces cerevisiae, the TPS1 terminator (TPS1t), coupled to a gene encoding a fluorescent protein, produced more transgenic mRNA and protein than did similar constructs containing other terminators, such as CYC1t, TDH3t, and PGK1t. This suggests that TPS1t can be used as a general terminator in the development of metabolically engineered yeast in high-yield systems.  相似文献   

9.
An androgen-inducible expression system for Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
A novel controllable expression system for Saccharomyces cerevisiae has been developed. Expression of the gene encoding the human androgen receptor, from a strong yeast promoter, results in transactivation of a hybrid promoter carrying androgen-responsive sequences such that a target gene may be expressed in an androgen-dependent manner. By selection of an appropriate combination of androgen receptor level, target-gene copy number and concentration of the androgenic ligand, dihydrotestosterone, the expression level can be set within a 1400-fold range with no detectable effect on normal cell growth.  相似文献   

10.
Summary The decay kinetics of mRNA was studied in a yeast temperature-sensitive mutant, ts136, which is defective in cytoplasmic RNA production at 37° C. The disappearance of the synthetic capacity of mRNA was determined by withdrawing equal volumes of ts136 cell culture and pulse-labelling with [35S]methionine at various time intervals after the shift to 37° C from 23° C. The synthesized proteins were separated on a two-dimensional gel electrophoretic system and then quantitatively analyzed for their incorporated radioactivities by scintillation counting. Our results show that yeast mRNAs have divergent functional half-lives ranging from 4.5 to 41 min, with an average value of 22 min. Each mRNA exhibits a simple exponential decay with its own characteristic decay pattern. Of the approximately 500 major polypeptides made by yeast cells, which are detectable on autoradiograms of the gels, 80 were arbitrarily selected and the mRNAs coding for those polypeptides were examined for their decay kinetics.  相似文献   

11.
The open reading frame YLR070c of Saccharomyces cerevisiae has high sequence similarity to S. cerevisiae sorbitol dehydrogenase and to xylitol dehydrogenase of Pichia stipitis. Overexpression of this open reading frame in S. cerevisiae resulted in xylitol dehydrogenase activity. The enzyme is specific for NADH. The following Michaelis constants were estimated: D-xylulose, 1.1 mM; NADH, 240 microM (at pH 7.0); xylitol, 25 mM; NAD, 100 microM (at pH 9.0). Xylitol dehydrogenase activity with the same kinetic properties can also be induced by xylose in wild type S. cerevisiae cells.  相似文献   

12.
13.
14.
15.
Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2  
  相似文献   

16.
The concept that mutations cause aging phenotypes could not be directly tested previously due to inability to identify age‐related mutations in somatic cells and determine their impact on organismal aging. Here, we subjected Saccharomyces cerevisiae to multiple rounds of replicative aging and assessed de novo mutations in daughters of mothers of different age. Mutations did increase with age, but their low numbers, < 1 per lifespan, excluded their causal role in aging. Structural genome changes also had no role. A mutant lacking thiol peroxidases had the mutation rate well above that of wild‐type cells, but this did not correspond to the aging pattern, as old wild‐type cells with few or no mutations were dying, whereas young mutant cells with many more mutations continued dividing. In addition, wild‐type cells lost mitochondrial DNA during aging, whereas shorter‐lived mutant cells preserved it, excluding a causal role of mitochondrial mutations in aging. Thus, DNA mutations do not cause aging in yeast. These findings may apply to other damage types, suggesting a causal role of cumulative damage, as opposed to individual damage types, in organismal aging.  相似文献   

17.
In a first experiment we have shown that S. cerevisiae beta-glutamyltranspeptidase is associated with a particulate fraction obtained by differential centrifugation. We have subsequently shown that this enzyme activity followed accurately the distribution of vacuolar markers. Liberation of vacuoles was carried out by mechanical disruption of spheroplast under isotonic conditions and the vacuoles were purified by centrifugation of Ficoll gradients. Yeast beta-glutamyltranspeptidase could be implicated in the exchanges of amino acids between the cytoplasm and the vacuolar sap.  相似文献   

18.
The mRNA sequence and structures that modify and are required for translation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae were investigated with sets of CYC1 alleles having alterations in the 5' leader region. Measurements of levels of CYC1 mRNA and iso-1-cytochrome c in strains having single copies of altered alleles with nested deletions led to the conclusion that there is no specific sequence adjacent to the AUG initiator codon required for efficient translation. However, the nucleotides preceding the AUG initiator codon at positions -1 and -3 slightly modified the efficiency of translation to an order of preference similar to that found in higher cells. In contrast to large effects observed in higher eucaryotes, the magnitude of this AUG context effect in S. cerevisiae was only two- to threefold. Furthermore, introduction of hairpin structures in the vicinity of the AUG initiator codon inhibited translation, with the degree of inhibition related to the stability and proximity of the hairpin. These results with S. cerevisiae and published findings on other organisms suggest that translation in S. cerevisiae is more sensitive to secondary structures than is translation in higher eucaryotes.  相似文献   

19.
20.
A dominant, single nuclear gene mutation, CSE1, caused inositol auxotrophy in yeast cells. The inositol requirement was marked when choline was present in the medium. Inositol-1-phosphate synthase, the regulatory enzyme of inositol synthesis, is repressed by inositol, or more profoundly by a combination of inositol and choline in the wild type. In CSE1, the level of inositol-1-phosphate synthase was low and was greatly repressed on the addition of choline alone. In accordance with this, INO1 mRNA encoding the enzyme was low even under the depressed conditions and was profoundly decreased by choline in CSE1. But in the wild type, the addition of choline alone had little effect. An INO1-lacZ fusion was constructed and the control of the INO1 promoter in CSE1 was studied. lacZ expression was repressed not only by inositol, but also by choline in CSE1, whereas it was repressed by inositol, but only slightly by choline in the wild type. CSE1 was unlinked to the INO1 structural gene. Thus CSE1 was thought to be a regulatory mutation. Furthermore, when the CDP-choline pathway was mutationally blocked, choline did not affect INO1 expression, indicating that the metabolism of choline via the CDP-choline pathway is required for INO1 repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号