首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study quantifies changes in soil organic carbon (SOC) stocks in Belgium between 1960, 1990 and 2000 for 289 spatially explicit land units with unique soil association and land‐use type, termed landscape units (LSU). The SOC stocks are derived from multiple nonstandardized sets of field measurements up to a depth of 30 cm. Approximately half of the LSU show an increase in SOC between 1960 and 2000. The significant increases occur mainly in soils of grassland LSU in northern Belgium. Significant decreases are observed on loamy cropland soils. Although the largest SOC gains are observed for LSU under forest (22 t C ha?1 for coniferous and 29 t C ha?1 for broadleaf and mixed forest in the upper 30 cm of soil), significant changes are rare because of large variability. Because the number of available measurements is very high for agricultural land, most significant changes occur under cropland and grassland, but the corresponding average SOC change is smaller than for forests (9 t C ha?1 increase for grassland and 1 t C ha?1 decrease for cropland). The 1990 data for agricultural LSU show that the SOC changes between 1960 and 2000 are not linear. Most agricultural LSU show a higher SOC stock in 1990 than in 2000, especially in northern Belgium. The observed temporal and spatial patterns can be explained by a change in manure application intensity. SOC stock changes caused by land‐use change are estimated. The SOC change over time is derived from observed differences between SOC stocks in space. Because SOC stocks are continuously influenced by a number of external factors, mainly land‐use history and current land management and climate, this approach gives only an approximate estimate whose validity is limited to these conditions.  相似文献   

2.
Wood from short rotation coppices (SRCs) is discussed as bioenergy feedstock with good climate mitigation potential inter alia because soil organic carbon (SOC) might be sequestered by a land-use change (LUC) from cropland to SRC. To test if SOC is generally enhanced by SRC over the long term, we selected the oldest Central European SRC plantations for this study. Following the paired plot approach soils of the 21 SRCs were sampled to 80 cm depth and SOC stocks, C/N ratios, pH and bulk densities were compared to those of adjacent croplands or grasslands. There was no general trend to SOC stock change by SRC establishment on cropland or grassland, but differences were very site specific. The depth distribution of SOC did change. Compared to cropland soils, the SOC density in 0–10 cm was significantly higher under SRC (17 ± 2 in cropland and 21 ± 2 kg C m−3 in SRC). Under SRC established on grassland SOC density in 0–10 cm was significantly lower than under grassland. The change rates of total SOC stocks by LUC from cropland to SRC ranged from −1.3 to 1.4 Mg C ha−1 yr−1 and −0.6 Mg C ha−1 yr−1 to +0.1 Mg C ha−1 yr−1 for LUC from grassland to SRC, respectively. The accumulation of organic carbon in the litter layer was low (0.14 ± 0.08 Mg C ha−1 yr−1). SOC stocks of both cropland and SRC soils were correlated with the clay content. No correlation could be detected between SOC stock change and soil texture or other abiotic factors. In summary, we found no evidence of any general SOC stock change when cropland is converted to SRC and the identification of the factors determining whether carbon may be sequestered under SRC remains a major challenge.  相似文献   

3.
The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15–50% slower when an erosion rate of 15 t soil ha?1 yr?1 was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3–1.0 t CO2 ha?1 yr?1. This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.  相似文献   

4.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

5.
Interest in bioenergy crops is increasing due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. We combined process‐based and geospatial models to estimate the potential biomass productivity of miscanthus and its potential impact on soil carbon stocks in the croplands of the continental United States. The optimum (climatic potential) rainfed productivity for field‐dried miscanthus biomass ranged from 1 to 23 Mg biomass ha?1 yr?1, with a spatial average of 13 Mg ha?1 yr?1 and a coefficient of variation of 30%. This variation resulted primarily from the spatial heterogeneity of effective rainfall, growing degree days, temperature, and solar radiation interception. Cultivating miscanthus would result in a soil organic carbon (SOC) sequestration at the rate of 0.16–0.82 Mg C ha?1 yr?1 across the croplands due to cessation of tillage and increased biomass carbon input into the soil system. We identified about 81 million ha of cropland, primarily in the eastern United States, that could sustain economically viable (>10 Mg ha?1 yr?1) production without supplemental irrigation, of which about 14 million ha would reach optimal miscanthus growth. To meet targets of the US Energy Independence and Security Act of 2007 using miscanthus as feedstock, 19 million ha of cropland would be needed (spatial average 13 Mg ha?1 yr?1) or about 16% less than is currently dedicated to US corn‐based ethanol production.  相似文献   

6.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   

7.
Anthropogenically induced change in soil redistribution plays an important role in the soil organic carbon (SOC) budget. Uncertainty of its impact is large because of the dearth of recent soil redistribution estimates concomitant with changing land use and management practices. An Australian national survey used the artificial radionuclide caesium‐137 (137Cs) to estimate net (1950s–1990) soil redistribution. South‐eastern Australia showed a median net soil loss of 9.7 t ha?1 yr?1. We resurveyed the region using the same 137Cs technique and found a median net (1990–2010) soil gain of 3.9 t ha?1 yr?1 with an interquartile range from ?1.6 t ha?1 yr?1 to +10.7 t ha?1 yr?1. Despite this variation, soil erosion across the region has declined as a likely consequence of the widespread adoption of soil conservation measures over the last ca 30 years. The implication of omitted soil redistribution dynamics in SOC accounting is to increase uncertainty and diminish its accuracy.  相似文献   

8.
Land‐use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites in the temperate zone, carbon response functions (CRFs) were derived to model the temporal dynamic of SOC after five different LUC types (mean soil depth of 30±6 cm). Grassland establishment caused a long lasting carbon sink with a relative stock change of 128±23% and afforestation on former cropland a sink of 116±54%, 100 years after LUC (mean±95% confidence interval). No new equilibrium was reached within 120 years. In contrast, there was no SOC sink following afforestation of grasslands and 75% of all observations showed SOC losses, even after 100 years. Only in the forest floor, there was carbon accumulation of 0.38±0.04 Mg ha?1 yr?1 in afforestations adding up to 38±4 Mg ha?1 labile carbon after 100 years. Carbon loss after deforestation (?32±20%) and grassland conversion to cropland (?36±5%), was rapid with a new SOC equilibrium being reached after 23 and 17 years, respectively. The change rate of SOC increased with temperature and precipitation but decreased with soil depth and clay content. Subsoil SOC changes followed the trend of the topsoil SOC changes but were smaller (25±5% of the total SOC changes) and with a high uncertainty due to a limited number of datasets. As a simple and robust model approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC.  相似文献   

9.
Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha? 1 yr? 1 for pastures and rangelands, and 0.2 to 1.64 Mg C ha? 1 yr? 1 for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr?1, compared to the emissions from coal combustion of 506 Tg C yr? 1.  相似文献   

10.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

11.
Given the importance of soil organic carbon (SOC) as a pool in the global carbon cycle and an indicator for soil quality, there exits an urgent need to monitor this dynamic soil property. Here, we present a modelling approach to analyze the spatial patterns and temporal evolution of organic carbon in mineral soils under agricultural land use in Belgium. An empirical model, predicting the SOC concentration in the top 0.3 m, as a function of precipitation, land use, soil type and management has been constructed and applied within a spatial context using data from different time slices. The results show that SOC content is strongly correlated with precipitation and temperature under cropland and with texture and drainage under grassland. Total SOC stock increased with 1.3% from 6.18 ± 0.03 kg C m?2 in 1960 to 6.26 ± 0.07 kg C m?2 in 2006. Although this increase was not significant (P>0.05), a significant discrepancy between cropland (?8%) and grassland (+10%) was observed. Foremost, the grasslands in the hilly southern part of the country, under relatively wet climate conditions, acted as important sinks of CO2. Under cropland, all soil types were characterized by a decrease in SOC, except for the clay soils in the north‐west. Currently, croplands in the central loam region have SOC concentrations close to 10 g C kg?1 indicating that these soils are at risk of a decline in aggregate stability. An overall strong SOC decline in poorly drained soils is probably caused by artificial drainage. Further research is needed to gain more insight into the processes driving the observed SOC trends. Moreover, the use of updated drainage class information and land management history would improve the empirical models.  相似文献   

12.
National estimates of changes in the amount of soil organic carbon (SOC) in cropland requires an assessment of uncertainty for accounting and reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Canada has data sets on SOC stocks in croplands, historical changes in SOC levels due to management practices, and historical changes in the area of land devoted to certain soil management practices. We conducted an analysis of uncertainty of the change in SOC levels due to management practices in Canada from 1991 to 2001 using Monte Carlo analysis and a simple model. Probability distribution functions were determined for each of the inputs of the model, enabling us to assess the uncertainty for the output. The storage rate of SOC in cropland soils of Canada for the 10‐year period ranged from 3.2 to 8.3 Mt C yr?1 at 95% confidence, with a mean of 5.7 Mt C yr?1. Approximately 67% (about 3.8 Mt C yr?1) of the increase in SOC storage in Canada occurred in Saskatchewan where the cropland area under no‐till increased from 10% to 35%, and the area of summer‐fallow declined from 43% to 20% during the study period. The large uncertainty in the effect of no‐till on SOC stock changes in the Gray‐Brown Luvisols of Ontario contributed most to the variance in the model output. If trends in agricultural management continue for the next 10‐year census period, the estimated SOC storage would comprise between 7% and 19% of the gap required to achieve the 6% reduction in 1990 greenhouse gas emission levels for Canada under the Kyoto Protocol.  相似文献   

13.
The capacity of perennial grasses to affect change in soil properties is well documented but information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. An on‐farm study (10 fields) in North Dakota, South Dakota, and Nebraska was sampled before switchgrass establishment and after 5 years to determine changes in soil bulk density (SBD), pH, soil phosphorus (P), and equivalent mass soil organic carbon (SOC). Changes in SBD were largely constrained to near‐surface depths (0–0.05 m). SBD increased (0–0.05 m) at the Nebraska locations (mean=0.16 Mg m?3), while most South Dakota and North Dakota locations showed declines in SBD (mean=?0.18 Mg m?3; range=?0.42–0.07 Mg m?3). Soil pH change was significant at five of the 10 locations at near surface depths (0–0.05 m), but absolute changes were modest (range=?0.67–0.44 pH units). Available P declined at all sites where it was measured (North Dakota and South Dakota locations). When summed across the surface 0.3 m depth, annual decreases in available P averaged 1.5 kg P ha?1 yr?1 (range=0.5–2.8 kg P ha?1 yr?1). Averaged across locations, equivalent mass SOC increased by 0.5 and 2.4 Mg C ha?1 yr?1 for the 2500 and 10 000 Mg ha?1 soil masses, respectively. Results from this study underscore the contribution of switchgrass to affect soil property changes, though considerable variation in soil properties exists within and across locations.  相似文献   

14.
Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.  相似文献   

15.
Biochar application to croplands has been proposed as a potential strategy to decrease losses of soil‐reactive nitrogen (N) to the air and water. However, the extent and spatial variability of biochar function at the global level are still unclear. Using Random Forest regression modelling of machine learning based on data compiled from the literature, we mapped the impacts of different biochar types (derived from wood, straw, or manure), and their interactions with biochar application rates, soil properties, and environmental factors, on soil N losses (NH3 volatilization, N2O emissions, and N leaching) and crop productivity. The results show that a suitable distribution of biochar across global croplands (i.e., one application of <40 t ha?1 wood biochar for poorly buffered soils, such as those characterized by soil pH<5, organic carbon<1%, or clay>30%; and one application of <80 t ha?1 wood biochar, <40 t ha?1 straw biochar, or <10 t ha?1 manure biochar for other soils) could achieve an increase in global crop yields by 222–766 Tg yr?1 (4%–16% increase), a mitigation of cropland N2O emissions by 0.19–0.88 Tg N yr?1 (6%–30% decrease), a decline of cropland N leaching by 3.9–9.2 Tg N yr?1 (12%–29% decrease), but also a fluctuation of cropland NH3 volatilization by ?1.9–4.7 Tg N yr?1 (?12%–31% change). The decreased sum of the three major reactive N losses amount to 1.7–9.4 Tg N yr?1, which corresponds to 3%–14% of the global cropland total N loss. Biochar generally has a larger potential for decreasing soil N losses but with less benefits to crop production in temperate regions than in tropical regions.  相似文献   

16.
The long-term use of cropland and cropland reclamation from natural ecosystems led to soil degradation. This study investigated the effect of the long-term use of cropland and cropland reclamation from natural ecosystems on soil organic carbon (SOC) content and density over the past 35 years. Altogether, 2140 topsoil samples (0–20 cm) were collected across Northeast China. Landsat images were acquired from 1985 to 2020 through Google Earth Engine, and the reflectance of each soil sample was extracted from the Landsat image that its time was consistent with sampling. The hybrid model that included two individual SOC prediction models for two clustering regions was built for accurate estimation after k-means clustering. The probability hybrid model, a combination between the hybrid model and classification probabilities of pixels, was introduced to enhance the accuracy of SOC mapping. Cropland reclamation results were extracted from the land cover time-series dataset at a 5-year interval. Our study indicated that: (1) Long-term use of cropland led to a 3.07 g kg−1 and 6.71 Mg C ha−1 decrease in SOC content and density, respectively, and the decrease of SOC stock was 0.32 Pg over the past 35 years; (2) nearly 64% of cropland had a negative change in terms of SOC content from 1985 to 2020; (3) cropland reclamation track changed from high to low SOC content, and almost no cropland was reclaimed on the “Black soils” after 2005; (4) cropland reclamation from wetlands resulted in the highest decrease, and reclamation period of years 31–35 decreased when SOC density and SOC stock were 16.05 Mg C ha−1 and 0.005 Pg, respectively, while reclamation period of years 26–30 from forest witnessed SOC density and stock decreases of 8.33 Mg C ha−1 and 0.01 Pg, respectively. Our research results provide a reference for SOC change in the black soil region of Northeast China and can attract more attention to the area of the protection of “Black soils” and natural ecosystems.  相似文献   

17.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

18.
Conservational management practices in grasslands have been considered one of the efficient options to enhance the soil organic carbon (SOC) accumulation. However, the SOC changes after the conservational management practices vary significantly under different grassland vegetation types and the environmental conditions. At present, it is not clear how the SOC accumulation changes along the soil profile if conservational management practice was adopted. In this study, we collected 663 paired observational data of SOC changes with and without conservational management practices in grasslands of China from 176 published literatures that has both the surface (0‒20 cm) and subsurface (to 40 cm depth) SOC measurements. The differences of SOC density (SOCD) between pre‒management and post‒management in the vertical soil layers were analyzed in order to establish a quantitative relationship of the SOC changes between the subsurface and the surface. The results revealed that in all grasslands, conservational management practices benefits the SOC accumulation by enhancing 0.43‒1.14 Mg C ha–1 yr–1. But the SOC increment weakened downwards along the soil profile. While the surface SOC was enhanced by 17% after conservational management, the subsurface SOC was enhanced by only 7%. The SOC accumulation was closely correlated with restoration duration, pre-management SOCD and the environmental factors and differed greatly among different grasslands and the practices adopted. The alpine and mountain grassland showed a higher annual SOC increment than the temperate grassland with the annual rate of 1.62 and 0.72 Mg C ha-1 yr-1, respectively. The SOC increment caused by the artificial plantation and the grazing exclusion conservational management was more than 2-fold that of the cropland abandonment and the extensive utilization. With the quantitative relationship of the SOC changes between soil layers, we provide a methodological option to estimate SOC changes to layers deeper than the recommendation of IPCC when only the surface layer SOC increment is available.  相似文献   

19.
Carbon (C) can be sequestered in the mineral soil after the conversion of intensively cropped agricultural fields to more extensive land uses such as afforested and natural succession ecosystems. Three land‐use treatments from the long‐term ecological research site at Kellogg biological station in Michigan were compared with a nearby deciduous forest. Treatments included a conventionally tilled cropland, a former cropland afforested with poplar for 10 years and an old field (10 years) succession. We used soil aggregate and soil organic matter fractionation techniques to isolate C pools that (1) have a high potential for C storage and (2) accumulate C at a fast rate during afforestation or succession. These fractions could serve as sensitive indicators for the total change in C content due to land‐use changes. At the mineral soil surface (0–7 cm), afforesting significantly increased soil aggregation to levels similar to native forest. However, surface soil (0–7 cm) C did not follow this trend: soil C of the native forest site (22.9 t C ha?1) was still significantly greater than the afforested (12.6 t C ha?1) and succession (15.4 t C ha?1) treatments. However, when the 0–50 cm soil layer was considered, no differences in total soil C were observed between the cropland and the poplar afforested system, while the successional system increased total soil C (0–50 cm) at a rate of 0.786 t C ha?1 yr?1. Afforested soils sequestered C mainly in the fine intra‐aggregate particulate organic matter (POM) (53–250 μm), whereas the successional soils sequestered C preferentially in the mineral‐associated organic matter and fine intra‐aggregate POM C pools.  相似文献   

20.
In recent years, the increase in Brazilian ethanol production has been based on expansion of sugarcane‐cropped area, mainly by the land use change (LUC) pasture–sugarcane. However, second‐generation (2G) cellulosic‐derived ethanol supplies are likely to increase dramatically in the next years in Brazil. Both these management changes potentially affect soil C (SOC) changes and may have a significant impact on the greenhouse gases balance of Brazilian ethanol. To evaluate these impacts, we used the DayCent model to predict the influence of the LUC native vegetation (NV)–pasture (PA)–sugarcane (SG), as well as to evaluate the effect of different management practices (straw removal, no‐tillage, and application of organic amendments) on long‐term SOC changes in sugarcane areas in Brazil. The DayCent model estimated that the conversion of NV‐PA caused SOC losses of 0.34 ± 0.03 Mg ha?1 yr?1, while the conversion PA‐SG resulted in SOC gains of 0.16 ± 0.04 Mg ha?1 yr?1. Moreover, simulations showed SOC losses of 0.19 ± 0.04 Mg ha?1 yr?1 in SG areas in Brazil with straw removal. However, our analysis suggested that adoption of some best management practices can mitigate these losses, highlighting the application of organic amendments (+0.14 ± 0.03 Mg C ha?1 yr?1). Based on the commitments made by Brazilian government in the UNFCCC, we estimated the ethanol production needed to meet the domestic demand by 2030. If the increase in ethanol production was based on the expansion of sugarcane area on degraded pasture land, the model predicted a SOC accretion of 144 Tg from 2020 to 2050, while increased ethanol production based on straw removal as a cellulosic feedstock was predicted to decrease SOC by 50 Tg over the same 30‐year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号