首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desmosomes are not formed in epithelial cell cultures growing in media with low (less than or equal to 0.1 mM) concentrations of Ca2+ (LCM) but appear rapidly upon shift to media of normal calcium concentrations (NCM). Previous authors using immunolocalization of desmoplakin, a marker protein for the desmosomal plaque, in LCM-grown cells have interpreted positively stained, dense, cytoplasmic aggregates on intermediate filaments (IF) bundles as preformed plaque units which upon NCM shift would move to the plasma membrane and contribute to desmosome formation. Studying various cell cultures, including primary mouse keratinocytes and human A-431 cells, we show that most, probably all, desmoplakin-positive aggregates in LCM-grown cells are associated with membranous structures, mostly vesicles, and also contain other desmosomal markers, including desmoglein, a transmembrane glycoprotein. We interpret such vesicles as residual desmosome-derived domains endocytosed upon cell dissociation. Only keratinocytes grown for long times (2-4 wk) in LCM are practically free from such vesicles. In addition, we demonstrate that certain cells such as A-431 cells, when passaged in LCM and in the absence of stable junctions, are able to continually assemble "half-desmosomes" on the plasma membrane which in turn can be endocytosed as plaque-bearing vesicles. We also show that in LCM the synthesis of several desmosomal proteins (desmoplakins I and II, plakoglobin, desmoglein, "band 6 protein") continues and that most of the plaque protein, desmoplakin, is diffusely spread over the cytoplasm, apparently in a soluble monodisperse form of approximately 9S. From our results we propose that the plaque proteins occur in small, discrete, diffusible entities in the cytoplasm, in concentrations that are relatively high in LCM and low in NCM, from which they assemble directly, i.e., without intermediate precursor aggregates on IFs in the cytoplasm, on certain plasma membrane domains in a Ca2+ dependent process.  相似文献   

2.
The distribution and fate of two junctional complexes, zonula adhaerens and desmosomes, after dissociation of cell-cell contacts is described in MDBK cells. Junctions were split between adjacent cells by treatment with EGTA and proteins associated with the plaques of zonulae adhaerentes and desmosomes were localized by immunological methods. Splitting of these junctions is accompanied by the dislocation of desmosomal plaque protein from the cell periphery and its distribution in punctate arrays over the whole cytoplasm. By contrast, vinculin associated with zonulae adhaerentes is still seen at early times (0.5-1 h) in a conspicuous belt-like structure which, however, is displaced from the plasma membrane. Strong vinculin staining is maintained on leading edges of free cell surfaces. Electron microscopy of EGTA-treated cells exposed to colloidal gold particles reveals the disappearance of junctional structures from the cell periphery and the concomitant appearance of a distinct class of gold particle-containing vesicles which are coated by dense plaques. These vesicle plaques react with antibodies to desmosomal plaque proteins and are associated with filaments of the cytokeratin type. In the same cells, extended dense aggregates are seen which are most probably the membrane-detached vinculin-rich material from the zonula adhaerens . The experiments show that, upon release from their junction-mediated connections with adjacent cells, major proteins associated with the cytoplasmic side of the junctions remain, for several hours, clustered within plaques displaced from the cell surface. While plaque material of adhaerens junctions containing vinculin is recovered in large belt-like aggregates, desmosomal plaque protein remains attached to membrane structures and appears on distinct vesicles endocytotically formed from half-desmosomal equivalents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The carboxyterminal cytoplasmic portions (tails) of desmosomal cadherins of both the desmoglein (Dsg) and desmocollin type are integral components of the desmosomal plaque and are involved in desmosome assembly and the anchorage of intermediate-sized filaments. When additional Dsg tails were introduced by cDNA transfection into cultured human epithelial cells, in the form of chimeras with the aminoterminal membrane insertion domain of rat connexin32 (Co32), the resulting stably transfected cells showed a dominant-negative defect specific for desmosomal junctions: despite the continual presence of all desmosomal proteins, the endogenous desmosomes disappeared and the formation of Co32-Dsg chimeric gap junctions was inhibited. Using cell transfection in combination with immunoprecipitation techniques, we have examined a series of deletion mutants of the Dsg1 tail in Co32-Dsg chimeras. We show that upon removal of the last 262 amino acids the truncated Dsg tail still effects the binding of plakoglobin but not of detectable amounts of any catenin and induces the dominant-negative phenotype. However, further truncation or excision of the next 41 amino acids, which correspond to the highly conserved carboxyterminus of the C-domain in other cadherins, abolishes plakoglobin binding and allows desmosomes to reform. Therefore, we conclude that this short segment provides a plakoglobin-binding site and is important for plaque assembly and the specific anchorage of either actin filaments in adherens junctions or IFs in desmosomes.  相似文献   

4.
Activation of caspases results in the disruption of structural and signaling networks in apoptotic cells. Recent biochemical and cell biological studies have shown that components of the cadherin-catenin adhesion complex in epithelial adherens junctions are targeted by caspases during apoptosis. In epithelial cells, desmosomes represent a second type of anchoring junctions mediating strong cell-cell contacts. Using antibodies directed against a set of desmosomal proteins, we show that desmosomes are proteolytically targeted during apoptosis. Desmogleins and desmocollins, representing desmosome-specific members of the cadherin superfamily of cell adhesion molecules, are specifically cleaved after onset of apoptosis. Similar to E-cadherin, the desmoglein-3 cytoplasmic tail is cleaved by caspases. In addition the extracellular domains of desmoglein-3 and desmocollin-3 are released from the cell surface by a metalloproteinase activity. In the presence of caspase and/or metalloproteinase inhibitors, both cleavage reactions are almost completely inhibited. As reported previously, the desmosomal plaque protein plakoglobin is cleaved by caspase-3 during apoptosis. Our studies now show that plakophilin-1 and two other major plaque proteins, desmoplakin-1 and -2, are also cleaved by caspases. Immunofluorescence analysis confirmed that this cleavage results in the disruption of the desmosome structure and thus contributes to cell rounding and disintegration of the intermediate filament system.  相似文献   

5.
Desmocollin 1 (Dsc1) is part of a desmosomal cell adhesion receptor formed in terminally differentiating keratinocytes of stratified epithelia. The dsc1 gene encodes two proteins (Dsc1a and Dsc1b) that differ only with respect to their COOH-terminal cytoplasmic amino acid sequences. On the basis of in vitro experiments, it is thought that the Dsc1a variant is essential for assembly of the desmosomal plaque, a structure that connects desmosomes to the intermediate filament cytoskeleton of epithelial cells. We have generated mice that synthesize a truncated Dsc1 receptor that lacks both the Dsc1a- and Dsc1b-specific COOH-terminal domains. This mutant transmembrane receptor, which does not bind the common desmosomal plaque proteins plakoglobin and plakophilin 1, is integrated into functional desmosomes. Interestingly, our mutant mice did not show the epidermal fragility previously observed in dsc1-null mice. This suggests that neither the Dsc1a- nor the Dsc1b-specific COOH-terminal cytoplasmic domain is required for establishing and maintaining desmosomal adhesion. However, a comparison of our mutants with dsc1-null mice suggests that the Dsc1 extracellular domain is necessary to maintain structural integrity of the skin.  相似文献   

6.
Various authors have reported reduced synthesis of epithelial junctional proteins during dedifferentiation, tumorigenesis and metastasis in a great variety of tumors. Consequently, it is generally accepted that loss of adhesive molecules and adhesion structures is implicated in the development of an invasive phenotype and poor patient prognosis. Colon carcinomas, on the other hand, were shown to behave differently as synthesis of main adhesive proteins continues despite the development of an invasive phenotype. In this study we used cultured cells grown under conditions that inhibited intercellular adhesion (low Ca2+ concentration) and compared these results with data obtained from metastasizing colon cancer cells (signet ring cell carcinoma). Characterization of these proteins and their structures were performed by immunoprecipitations, Western blot analysis, immunohistochemistry, pre-embedding immuno-electron microscopy, and a new method to perform immuno-electron microscopy on paraffin-embedded material, which we present in this paper. We demonstrate that synthesis carries on for both, the desmosomal and the proteins of the zonula adhaerens. While, however, the assembly of desmosomal structures in the form of half-desmosomes at the cell surface continues, those of the zonula adhaerens did not. Instead E-cadherin was found, although associated with alpha-catenin, beta-catenin, and plakoglobin, evenly distributed at the plasma membrane of the cultured cells and also at the surface of the dissociated tumor cells. We conclude from our observations that continued expression and synthesis of junctional proteins do not necessarily contribute to the suppression of tumor invasion and metastasis of colon cancer.  相似文献   

7.
The desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), comprise the adhesive core of intercellular junctions known as desmosomes. Although these adhesion molecules are known to be critical for tissue integrity, mechanisms that coordinate their trafficking into intercellular junctions to regulate their proper ratio and distribution are unknown. We demonstrate that Dsg2 and Dsc2 both exhibit microtubule-dependent transport in epithelial cells but use distinct motors to traffic to the plasma membrane. Functional interference with kinesin-1 blocked Dsg2 transport, resulting in the assembly of Dsg2-deficient junctions with minimal impact on distribution of Dsc2 or desmosomal plaque components. In contrast, inhibiting kinesin-2 prevented Dsc2 movement and decreased its plasma membrane accumulation without affecting Dsg2 trafficking. Either kinesin-1 or -2 deficiency weakened intercellular adhesion, despite the maintenance of adherens junctions and other desmosome components at the plasma membrane. Differential regulation of desmosomal cadherin transport could provide a mechanism to tailor adhesion strength during tissue morphogenesis and remodeling.  相似文献   

8.
Desmosomal cadherins are a family of calcium regulated proteins involved in the formation of desmosomes, a type of cell junction important in maintaining cell adhesion and tissue stability. The desmosomal plaque consists of members of the desmosomal cadherin, plakin and armadillo family of proteins. Desmosomal cadherins are transmembrane glycoproteins that interact with desmosomal cadherins of the adjacent cells via their extracellular repeat domains and are divided in two subfamilies, the desmogleins (Dsg) and the desmocollins (Dsc). On the cytoplasmic side, the cadherins connect to the intermediate filament (IF) network indirectly by interacting with plakin and armadillo proteins. Here, we report the elucidation of the genomic structure of two mouse desmocollin genes, Dsc2 and Dsc3. Interestingly, at the genomic level, desmocollins show a higher degree of similarity to the classical cadherins, such as E-cadherin, than to the desmogleins.  相似文献   

9.
Desmosomes and adherens junctions are cadherin-based protein complexes responsible for cell-cell adhesion of epithelial cells. Type 1 cadherins of adherens junctions show specific homophilic adhesion that plays a major role in developmental tissue segregation. The desmosomal cadherins, desmocollin and desmoglein, occur as several different isoforms with overlapping expression in some tissues where different isoforms are located in the same desmosomes. Although adhesive binding of desmosomal cadherins has been investigated in a variety of ways, their interaction in desmosome-forming epithelial cells has not been studied. Here, using extracellular homobifunctional cross-linking, we provide evidence for homophilic and isoform-specific binding between the Dsc2, Dsc3, Dsg2, and Dsg3 isoforms in HaCaT keratinocytes and show that it represents trans interaction. Furthermore, the cross-linked adducts are present in the detergent-insoluble fraction, and electron microscopy shows that extracellular cross-linking probably occurs in desmosomes. We found no evidence for either heterophilic or cis interaction, but neither can be completely excluded by our data. Mutation of amino acid residues Trp-2 and Ala-80 that are important for trans interaction in classical cadherin adhesive binding abolished Dsc2 binding, indicating that these residues are also involved in desmosomal adhesion. These interactions of desmosomal cadherins may be of key importance for their ordered arrangement within desmosomes that we believe is essential for desmosomal adhesive strength and the maintenance of tissue integrity.  相似文献   

10.
Desmoglein 2 (Dsg2) is a Ca(2+)-dependent adhesion molecule of desmosomes and is synthesized in all desmosome-bearing tissues from their earliest appearance onward. To examine the function of Dsg2, its gene was inactivated by homologous recombination in embryonal stem (ES) cells for the generation of knockout mice. DSG2 -/- mice and a considerable number of DSG2 +/- mice died at or shortly after implantation. On the other hand, DSG2 -/- blastocysts developed an apparently normal trophectoderm layer, the first tissue known to produce desmosomes, and hatched properly. Immunofluorescence analyses of these blastocysts showed, however, that the distribution of the desmosomal plaque protein desmoplakin was disturbed, whereas the adherens junction proteins E-cadherin and beta-catenin appeared to be unaffected. Unexpectedly, we found that Dsg2 seems to be essential for the inner cell mass and the ES cell population derived there from. We present evidence that Dsg2, which is located in desmoplakin-negative wild-type ES cells in non-desmosomal junctions, is needed for normal ES cell proliferation. Our observations thus reveal that important Dsg2 functions are desmosome-independent during early development and are needed for ES cell and early embryo survival.  相似文献   

11.
The epidermal growth factor receptor (EGFR) has been proposed as a key modulator of cadherin-containing intercellular junctions, particularly in tumors that overexpress this tyrosine kinase. Here the EGFR tyrosine kinase inhibitor PKI166 and EGFR blocking antibody C225, both of which are used clinically to treat head and neck cancers, were used to determine the effects of EGFR inhibition on intercellular junction assembly and adhesion in oral squamous cell carcinoma cells. EGFR inhibition resulted in a transition from a fibroblastic morphology to a more epithelial phenotype in cells grown in low calcium; under these conditions cadherin-mediated cell-cell adhesion is normally reduced, and desmosomes are absent. The accumulated levels of desmoglein 2 (Dsg2) and desmocollin 2 increased 1.7-2.0-fold, and both desmosomal cadherin and plaque components were recruited to cell-cell borders. This redistribution was paralleled by an increase in Dsg2 and desmoplakin in the Triton-insoluble cell fraction, suggesting that EGFR blockade promotes desmosome assembly. Importantly, E-cadherin expression and solubility were unchanged. Furthermore, PKI166 blocked tyrosine phosphorylation of Dsg2 and plakoglobin following epidermal growth factor stimulation, whereas no change in phosphorylation was detected for E-cadherin and beta-catenin. The increase in Dsg2 protein was in part due to the inhibition of matrix metalloproteinase-dependent proteolysis of this desmosomal cadherin. These morphological and biochemical changes were accompanied by an increase in intercellular adhesion based on functional assays at all calcium concentrations tested. Our results suggest that EGFR inhibition promotes desmosome assembly in oral squamous cell carcinoma cells, resulting in increased cell-cell adhesion.  相似文献   

12.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

13.
《The Journal of cell biology》1996,134(4):985-1001
The desmosomal plaque protein desmoplakin (DP), located at the juncture between the intermediate filament (IF) network and the cytoplasmic tails of the transmembrane desmosomal cadherins, has been proposed to link IF to the desmosomal plaque. Consistent with this hypothesis, previous studies of individual DP domains indicated that the DP COOH terminus associates with IF networks whereas NH2-terminal sequences govern the association of DP with the desmosomal plaque. Nevertheless, it had not yet been demonstrated that DP is required for attaching IF to the desmosome. To test this proposal directly, we generated A431 cell lines stably expressing DP NH2-terminal polypeptides, which were expected to compete with endogenous DP during desmosome assembly. As these polypeptides lacked the COOH-terminal IF-binding domain, this competition should result in the loss of IF anchorage if DP is required for linking IF to the desmosomal plaque. In such cells, a 70-kD DP NH2- terminal polypeptide (DP-NTP) colocalized at cell-cell interfaces with desmosomal proteins. As predicted, the distribution of endogenous DP was severely perturbed. At cell-cell borders where endogenous DP was undetectable by immunofluorescence, there was a striking absence of attached tonofibrils (IF bundles). Furthermore, DP-NTP assembled into ultrastructurally identifiable junctional structures lacking associated IF bundles. Surprisingly, immunofluorescence and immunogold electron microscopy indicated that adherens junction components were coassembled into these structures along with desmosomal components and DP-NTP. These results indicate that DP is required for anchoring IF networks to desmosomes and furthermore suggest that the DP-IF complex is important for governing the normal spatial segregation of adhesive junction components during their assembly into distinct structures.  相似文献   

14.
Cells of a clonal line (BMGE + HM) selected from bovine mammary gland epithelial cell cultures are described which, after reaching confluence, do not assume typical epithelioid morphology, but form elongated cells with long slender processes extending over the surfaces of other cells. However, cells of this line which display non-epithelioid morphology and are exceptionally rich in actin microfilaments are identified as epithelial cells by their synthesis of cytokeratins and desmosomal plaque proteins, as demonstrated by immunofluorescence and immunoelectron microscopy and by gel electrophoresis of cytoskeletal proteins. The cells do not produce vimentin and desmin filaments. The specific cytokeratin polypeptides of these myoid cells are identical to those present in normal epithelioid BMGE + H cells but are arranged in unusual arrays of meshworks of finely dispersed, non-fasciated filaments and granular structures. Desmosomal plaque proteins, notably desmoplakins, are abundant, but the electron microscopic appearance of the desmosomes is abnormal in that most of them are associated with a second accessory plaque formed at a distance of 0.1-0.15 micron from the normal desmosomal plaque. Both cytokeratin filaments and desmosomal structures are found throughout the whole cytoplasm, including the extended cell processes. The existence of an epithelial cell line with such an unusual morphology demonstrates the importance of non-morphological criteria in identifying epithelium-derived cells. Our findings also indicate that dramatic differences of cell shape and organization of epithelial cells need not necessarily be associated with changes in the expression of specific cytoskeletal proteins. The possible origin of this cell line from myoepithelial cells is discussed.  相似文献   

15.
Plakophilin 1, a member of the armadillo multigene family, is a protein with dual localization in the nucleus and in desmosomes. To elucidate its role in desmosome assembly and regulation, we have analyzed its localization and binding partners in vivo. When overexpressed in HaCaT keratinocytes, plakophilin 1 localized to the nucleus and to desmosomes, and dramatically enhanced the recruitment of desmosomal proteins to the plasma membrane. This effect was mediated by plakophilin 1's head domain, which interacted with desmoglein 1, desmoplakin, and keratins in the yeast two-hybrid system. Overexpression of the armadillo repeat domain induced a striking dominant negative phenotype with the formation of filopodia and long cellular protrusions, where plakophilin 1 colocalized with actin filaments. This phenotype was strictly dependent on a conserved motif in the center of the armadillo repeat domain. Our results demonstrate that plakophilin 1 contains two functionally distinct domains: the head domain, which could play a role in organizing the desmosomal plaque in suprabasal cells, and the armadillo repeat domain, which might be involved in regulating the dynamics of the actin cytoskeleton.  相似文献   

16.
Apoptotic cells are known to regulate the ordered dismantling of intercellular contacts through caspase activity. Despite the important role of desmoglein (Dsg) 2 in epithelial cell-cell adhesion, the fate of this widespread desmosomal cadherin during apoptosis is yet poorly understood. Here, by means of pharmacological approaches, we investigated whether Dsg2 was targeted by caspases in HaCaT and HT-29 cell lines undergoing staurosporine (STS)-induced apoptosis. Results showed that STS induced a caspase-dependent form of cell-death in both keratinocytes (HaCaT) and enterocytes (HT-29), that associated with progressive depletion of Dsg2 from cell lysates. The proteolytic processing of full-length Dsg2 resulted in the appearance of a 70-kDa fragment which was released into the cytosol. Consistently, immunofluorescence studies revealed that Dsg2 staining was abolished from cell surface whereas the cytoplasmic region of Dsg2 did localize intracellularly. Plakoglobin (Pg) also underwent cleavage and detached from Dsg2. Apoptotic changes paralleled with progressive loss of intercellular adhesion strength. All these biochemical, morphological, and functional changes were regulated by caspase 3. Indeed, in the presence of the caspase 3-inhibitor z-DEVD-fmk, full-length Dsg2 protein levels were preserved, whereas the amount of the 70-kDa fragment was maintained on control levels. Furthermore, cells pretreated with z-DEVD-fmk retained the membrane labeling of Dsg2. Taken together, our data demonstrate that the apoptotic processing of Dsg2 is mediated by caspase 3 in epithelial cells.  相似文献   

17.
Intermediate filaments and the initiation of desmosome assembly   总被引:7,自引:23,他引:7       下载免费PDF全文
The desmosome junction is an important component in the cohesion of epithelial cells, especially epidermal keratinocytes. To gain insight into the structure and function of desmosomes, their morphogenesis has been studied in a primary mouse epidermal (PME) cell culture system. When these cells are grown in approximately 0.1 mM Ca2+, they contain no desmosomes. They are induced to form desmosomes when the Ca2+ level in the culture medium is raised to approximately 1.2 mM Ca2+. PME cells in medium containing low levels of Ca2+, and then processed for indirect immunofluorescence using antibodies directed against desmoplakins (desmosomal plaque proteins), display a pattern of discrete fluorescent spots concentrated mainly in the perinuclear region. Double label immunofluorescence using keratin and desmoplakin antibodies reveals that the desmoplakin-containing spots and the cytoplasmic network of tonofibrils (bundles of intermediate filaments [IFB]) are in the same juxtanuclear region. Within 1 h after the switch to higher levels of Ca2+, the spots move toward the cell surface, primarily to areas of cell-cell contact and not to free cell surfaces. This reorganization occurs at the same time that tonofibrils also move toward cell surfaces in contact with neighboring cells. Once the desmoplakin spots have reached the cell surface, they appear to aggregate to form desmosomes. These immunofluorescence observations have been confirmed by immunogold ultrastructural localization. Preliminary biochemical and immunological studies indicate that desmoplakin appears in whole cell protein extracts and in Triton high salt insoluble residues (i.e., cytoskeletal preparations consisting primarily of IFB) prepared from PME cells maintained in medium containing both low and normal Ca2+ levels. These findings show that certain desmosome components are preformed in the cytoplasm of PME cells. These components undergo a dramatic reorganization, which parallels the changes in IFB redistribution, upon induction of desmosome formation. The reorganization depends upon both the extracellular Ca2+ level and the establishment of cell-to-cell contacts. Furthermore, the data suggests that desmosomes do not act as organizing centers for the elaboration of IFB. Indeed, we postulate that the movement of IFB and preformed desmosomal components to the cell surface is an important initiating event in desmosome morphogenesis.  相似文献   

18.
《Biophysical journal》2022,121(7):1322-1335
Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.  相似文献   

19.
Abstract. The spatial relationships between the protein constituents of two junctional structures, adhaerens junctions and desmosomes, were determined by double immunofluorescence microscopy using marker proteins specific for these structures. Adhaerens junctions were visualized by immunofluorescent labeling for the membrane-associated protein vinculin and by their association with actin filaments. Desmosomal components were identified by labeling with anti-bodies to a group of minor desmosomal plaque proteins (DP1 antigens) and their association with filaments stained by cytokeratin antibodies. Double immunofluorescence microscopy of these components was performed in several tissues and cultured cells, including intact intestine, dissociated intestinal cells, and two morphologically different types of epithelial cells, cultured bovine kidney (MDBK), and mammary gland (BMGE) epithelial cells. This allowed the direct demonstration that each filament system is associated exclusively with its specific membrane-bound junctional protein. Vinculin and DP1-protein were found in distinct sites in the subapical intercellular junctional complex of intestinal epithelium and MDBK cells. Cell-substrate focal contacts contained vinculin and actin and showed no apparent relationships to the tonofilament system whereas intercellular contacts of BMGE cells were characterized by positive staining for DP1-protein and associated cytokeratin filaments. Immunolabeling of the cultured cells at different intervals after plating for the cytoskeletal elements and their membrane anchorage proteins was used to determine the temporal sequence of their organization. We propose that this approach may be used for the molecular definition and identification of cellular contacts and junctions as well as for studies of junction topology, dynamics of junction-cytoskeleton interactions, and junction biogenesis.  相似文献   

20.
Desmosomes are prominent cell-cell adhesive junctions found in a variety of epithelial tissues, including the oral epithelium. The transmembrane core of the desmosome is composed of the desmosomal cadherins that interact extracellularly to mediate cell-cell adhesion. The cytoplasmic domain of desmosomal cadherins interact with plaque proteins that in turn interact with the keratin intermediate filament cytoskeleton. Plakophilin 1 is a major desmosomal plaque component that functions to recruit intermediate filaments to sites of cell-cell contact via interactions with desmoplakin. Decreased assembly of desmosomes has been reported in several epithelial cancers. We examined plakophilin-1 expression in an esophageal squamous cell carcinoma tissue microarray and found that plakophilin-1 expression inversely correlates with tumor grade. In addition, we sought to investigate the effect of plakophilin-1 expression on desmosome assembly and cell motility in oral squamous cell carcinoma cell lines. Cell lines expressing altered levels of plakophilin-1 were generated and the ability of these cells to recruit desmoplakin to sites of cell-cell contact was examined. Our results show that decreased expression of plakophilin-1 results in decreased desmosome assembly and increased cell motility and invasion. These data lead us to propose that loss of plakophilin-1 expression during head and neck squamous cell carcinoma (HNSCC) progression may contribute to an invasive phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号