首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligation of the death receptor Fas/CD95 activates an apoptotic cascade and plays critical roles during infectious diseases. Previous work has established that infection with the intracellular parasite Toxoplasma gondii renders cells resistant to multiple inducers of apoptosis. However, the effect of T. gondii on the death receptor pathway is poorly characterized. Here we have determined the impact of the parasite on apoptosis in type I cells that transduce Fas/CD95 engagement via the death receptor pathway without the need of a mitochondrial amplification loop. The results have shown that T. gondii significantly reduced Fas/CD95-triggered apoptosis by impairing activation of the initiator caspase 8. Parasitic infection diminished the cellular amount of procaspase 8, resulting in its decreased recruitment to the death-inducing signalling complex and the impaired activation of effector caspases. Remarkably, downregulation of caspase 8 protein in T. gondii-infected cells also occurred in the absence of Fas/CD95 engagement and was associated with the appearance of non-canonical caspase 8 cleavage fragments. Distinct parasite proteins were associated with caspase 8 and its proteolytic fragments. These findings indicate that T. gondii aberrantly processes and finally degrades the initiator caspase 8, thereby, blocking Fas/CD95-mediated apoptosis which signals independently of the apoptogenic function of host cell mitochondria.  相似文献   

2.
3.
Malaria-protective CD8+ T cells specific for the circumsporozoite (CS) protein are primed by dendritic cells (DCs) after sporozoite injection by infected mosquitoes. The primed cells then eliminate parasite liver stages after recognizing the CS epitopes presented by hepatocytes. To define the in vivo processing of CS by DCs and hepatocytes, we generated parasites carrying a mutant CS protein containing the H-2K(b) epitope SIINFEKL, and evaluated the T cell response using transgenic and mutant mice. We determined that in both DCs and hepatocytes CS epitopes must reach the cytosol and use the TAP transporters to access the ER. Furthermore, we used endosomal mutant (3d) and cytochrome c treated mice to address the role of cross-presentation in the priming and effector phases of the T cell response. We determined that in DCs, CS is cross-presented via endosomes while, conversely, in hepatocytes protein must be secreted directly into the cytosol. This suggests that the main targets of protective CD8+ T cells are parasite proteins exported to the hepatocyte cytosol. Surprisingly, however, secretion of the CS protein into hepatocytes was not dependent upon parasite-export (Pexel/VTS) motifs in this protein. Together, these results indicate that the presentation of epitopes to CD8+ T cells follows distinct pathways in DCs when the immune response is induced and in hepatocytes during the effector phase.  相似文献   

4.
The influence of HIV burden variations on the frequencies of Ag-specific CD8+ T cell responses was evaluated before and during highly active antiretroviral therapy by analyzing the number, diversity, and function of these cells. The frequencies of HLA-A2-restricted CD8+ PBL binding HLA-A2/HIV-epitope tetramers or producing IFN-gamma were below 1%. A panel of 16 CTL epitopes covering 15 HLA class I molecules in 14 patients allowed us to test 3.8 epitopes/patient and to detect 2.2 +/- 1.8 HIV epitope-specific CD8+ subsets per patient with a median frequency of 0.24% (0.11-4. 79%). During the first month of treatment, viral load rapidly decreased and frequencies of HIV-specific CD8 PBL tripled, eight new HIV specificities appeared of 11 undetectable at entry, while CMV-specific CD8+ PBL also appeared. With efficient HIV load control, all HIV specificities decayed involving a reduction of the CD8+CD27+CD11ahigh HIV-specific effector subset. Virus rebounds triggered by scheduled drug interruptions or transient therapeutic failures induced four patterns of epitope-specific CD8+ lymphocyte dynamics, i.e., peaks or disappearance of preexisting specificities, emergence of new specificities, or lack of changes. The HIV load rebounds mobilized both effector/memory HIV- and CMV-specific CD8+ lymphocytes. Therefore, frequencies of virus-specific CD8 T cells appear to be positively correlated to HIV production in most cases during highly active antiretroviral therapy, but an inverse correlation can also be observed with rapid virus changes that might involve redistribution, sequestration, or expansion of these Ag-specific CD8 T cells. Future strategies of therapeutic interruptions should take into account these various HIV-specific cell dynamics during HIV rebounds.  相似文献   

5.
We develop a mathematical framework for modeling regulatory mechanisms in the immune system. The model describes dynamics of key components of the immune network within two compartments: lymph node and tissue. We demonstrate using numerical simulations that our system can eliminate virus-infected cells, which are characterized by a tendency to increase without control (in absence of an immune response), while tolerating normal cells, which are characterized by a tendency to approach a stable equilibrium population. We experiment with different combinations of T cell reactivities that lead to effective systems and conclude that slightly self-reactive T cells can exist within the immune system and are controlled by regulatory cells. We observe that CD8+ T cell dynamics has two phases. In the first phase, CD8+ cells remain sequestered within the lymph node during a period of proliferation. In the second phase, the CD8+ population emigrates to the tissue and destroys its target population. We also conclude that a self-tolerant system must have a mechanism of central tolerance to ensure that self-reactive T cells are not too self-reactive. Furthermore, the effectiveness of a system depends on a balance between the reactivities of the effector and regulatory T cell populations, where the effectors are slightly more reactive than the regulatory cells.  相似文献   

6.
MHC class I-restricted CD8+ T cells play an important role in controlling HIV and SIV replication. In SIV-infected Indian rhesus macaques (Macaca mulatta), comprehensive CD8+ T cell epitope identification has only been undertaken for two alleles, Mamu-A*01 and Mamu-B*17. As a result, these two molecules account for virtually all known MHC class I-restricted SIV-derived CD8+ T cell epitopes. SIV pathogenesis research and vaccine testing have intensified the demand for epitopes restricted by additional MHC class I alleles due to the shortage of Mamu-A*01+ animals. Mamu-A*02 is a high frequency allele present in over 20% of macaques. In this study, we characterized the peptide binding of Mamu-A*02 using a panel of single amino acid substitution analogues and a library of 497 unrelated peptides. Of 230 SIVmac239 peptides that fit the Mamu-A*02 peptide-binding motif, 75 peptides bound Mamu-A*02 with IC50 values of < or = 500 nM. We assessed the antigenicity of these 75 peptides using an IFN-gamma ELISPOT assay with freshly isolated PBMC from eight Mamu-A*02+ SIV-infected macaques and identified 17 new epitopes for Mamu-A*02. The synthesis of five Mamu-A*02 tetramers demonstrated the discrepancy between tetramer binding and IFN-gamma secretion by SIV-specific CD8+ T cells during chronic SIV infection. Bulk sequencing determined that 2 of the 17 epitopes accumulated amino acid replacements in SIV-infected macaques by the chronic phase of infection, suggestive of CD8+ T cell escape in vivo. This work enhances the use of the SIV-infected macaque model for HIV and increases our understanding of the breadth of CD8+ T cell responses in SIV infection.  相似文献   

7.
Killer cell lectin-like receptor G1 (KLRG1) is one of several inhibitory killer cell lectin-like receptors expressed by NK cells and T lymphocytes, mainly CD8(+) effector/memory cells that can secrete cytokines but have poor proliferative capacity. Using multiparameter flow cytometry, we studied KLRG1 expression on CD8(+) T cells specific for epitopes of CMV, EBV, influenza, and HIV. Over 92% of CD8(+) cells specific for CMV or EBV expressed KLRG1 during the latent stage of these chronic infections. CD8(+) T cell cells specific for HIV epitopes were mostly (72-89%) KLRG1(+), even though not quite at the level of predominance noted with CMV or EBV. Lower frequency of KLRG1 expression was observed among CD8(+) cells specific for influenza (40-73%), a resolved infection without a latent stage. We further observed that CD8(+) cells expressing CD57, a marker of replicative senescence, also expressed KLRG1; however, a population of CD57(-)KLRG1(+) cells was also identified. This population may represent a "memory" phenotype, because they also expressed CD27, CD28, CCR7, and CD127. In contrast, CD57(+)KLRG1(+) cells did not express CD27, CD28, and CCR7, and expressed CD127 at a much lower frequency, indicating that they represent effector cells that are truly terminally differentiated. The combination of KLRG1 and CD57 expression might thus aid in refining functional characterization of CD8(+) T cell subsets.  相似文献   

8.
Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.  相似文献   

9.
HIV-specific CD8 T cell responses are defective in chronic HIV infection. In this study, we report that costimulation with either CD137L (4-1BBL) or CD80 (B7.1) enhanced the Ag-specific expansion and acquisition of effector function by HIV-specific memory CD8 T cells. Ag-specific T cells from recently infected donors showed maximal expansion with single costimulatory molecules. Dual costimulation of T cells from recently infected donors or from healthy donors responding to influenza epitopes led to enhanced responses when the accumulation of cytokines was measured. However, accumulation of regulatory cytokines, particularly IFN-gamma, led to inhibition of further Ag-specific CD8 T cell expansion in the cultures. This inhibition was relieved by neutralization of IFN-gamma or of IFN-gamma, TNF, and IL-10. Thus, strong costimulation of T cells in vitro can lead to induction of regulatory cytokines at levels that limit further T cell expansion. In marked contrast, T cells from long-term (>4 years) infected HIV+ donors exhibited reduced Ag-specific CD8 T cell expansion, reduced CD4 T cell responses, and minimal cytokine accumulation. Dual costimulation with both 4-1BBL and B7.1 enhanced responses of T cells from long-term infected subjects to a level similar to that obtained with T cells from early in HIV infection. Experiments with purified CD8 T cells showed that B7.1 and 4-1BBL could act directly and synergistically on CD8 T cells. Taken together, these data suggest that 4-1BBL and B7.1 have additive or synergistic effects on HIV-specific CD8 T cell responses and represent a promising combination for therapeutic vaccination for HIV.  相似文献   

10.
Chronic hepatitis C virus (HCV) infection is associated with increased levels of peripheral T cell apoptosis. We aimed to study whether T cell apoptosis markers indicate pathways that may contribute to clinical progression in HCV monoinfected and HIV–HCV coinfected patients. Activation of the extrinsic apoptosis pathways was measured by levels of death receptor Fas, initiator caspase 8 and effector caspases 3 and 7 activity and Annexin V binding on peripheral CD4 and CD8 T cells of HCV monoinfected and HIV/HCV coinfected patients, as well as healthy controls and HIV-infected, hepatitis B virus-infected and primary biliary cirrhosis disease controls. Association with liver fibrosis was assessed by biopsy or by transient elastography. HCV monoinfected and HIV–HCV coinfected patients displayed enhanced peripheral CD4 and CD8 T cell apoptosis. Caspase 8 activity was highest in HIV–HCV coinfection, without enhanced downstream activity of caspases 3 and 7. Level of peripheral T cell apoptosis was independent of liver fibrosis or other disease parameters in all disease groups. The extrinsic apoptosis pathway is upregulated in HCV monoinfection and HIV–HCV coinfection, but this is independent of liver disease severity.  相似文献   

11.
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.  相似文献   

12.
Control of persistently infecting viruses requires that antiviral CD8(+) T cells sustain their numbers and effector function. In this study, we monitored epitope-specific CD8(+) T cells during acute and persistent phases of infection by polyoma virus, a mouse pathogen that is capable of potent oncogenicity. We identified several novel polyoma-specific CD8(+) T cell epitopes in C57BL/6 mice, a mouse strain highly resistant to polyoma virus-induced tumors. Each of these epitopes is derived from the viral T proteins, nonstructural proteins produced by both productively and nonproductively (and potentially transformed) infected cells. In contrast to CD8(+) T cell responses described in other microbial infection mouse models, we found substantial variability between epitope-specific CD8(+) T cell responses in their kinetics of expansion and contraction during acute infection, maintenance during persistent infection, as well as their expression of cytokine receptors and cytokine profiles. This epitope-dependent variability also extended to differences in maturation of functional avidity from acute to persistent infection, despite a narrowing in TCR repertoire across all three specificities. Using a novel minimal myeloablation-bone marrow chimera approach, we visualized priming of epitope-specific CD8(+) T cells during persistent virus infection. Interestingly, epitope-specific CD8(+) T cells differed in CD62L-selectin expression profiles when primed in acute or persistent phases of infection, indicating that the context of priming affects CD8(+) T cell heterogeneity. In summary, persistent polyoma virus infection both quantitatively and qualitatively shapes the antiviral CD8(+) T cell response.  相似文献   

13.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

14.
GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART). The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL) or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38+/HLA-DR+), proliferation (Ki-67+), and HIV entry co-receptor expression (CCR5+ and CXCR4+) on total CD4+ and CD8+ T cells, and on naïve, central memory (CM), effector memory (EM), and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.  相似文献   

15.
Petravic J  Davenport MP 《PloS one》2010,5(11):e15083
Many studies have shown that vaccines inducing CD8+ T cell responses can reduce viral loads and preserve CD4+ T cell numbers in monkey models of HIV infection. The mechanism of viral control by the vaccine-induced CD8+ T cells is usually assumed to be cytolysis of infected cells. However, in addition to cytolysis of infected cells, CD8+ T cells secrete a range of soluble factors that suppress viral replication. We have studied the dynamics of virus and CD4+ T cells in a successful vaccination-challenge model of SHIV infection. We find that better viral control in the acute phase of infection is associated with slower decay of peak viral load. Comparing viral and CD4+ T cell dynamics in acute infection, we find that a cytolytic mode of viral control with direct killing of infected cells is inconsistent with the observed trends. On the other hand, comparison of the predicted effects of noncytolytic CD8+ effector function with the experimental data shows that non-cytolytic control provides a better explanation of the experimental results. Our analysis suggests that vaccine-induced CD8+ T cells control SHIV infection by non-cytolytic means.  相似文献   

16.
Virus-specific CD8(+) T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8(+) T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8(+) T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8(+) T cells was associated with an enhanced potential for CD8 expansion and IFN-gamma production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8(+) T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8(+) T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.  相似文献   

17.
Identifying and characterizing Ag-specific CD8+ T cells are central to the study of immunological memory. Although powerful strategies such as MHC tetramers and peptide-induced cytokine production assays exist for identifying Ag-specific CD8+ T cells, alternate strategies that are not dependent upon a priori knowledge of the immunodominant and subdominant antigenic epitopes, as well as the MHC background of the animal are of obvious utility. In this study, we present a transgenic mouse model that uses Cre-loxP recombination to permanently mark all activated CD8+ T cells with beta-galactosidase. We used the lymphocytic choriomeningitis virus infection model to track the dynamics of the antiviral CD8+ T cell responses. We show that in this transgenic mouse model system, all of the antiviral effector and memory CD8+ T cells are contained within the beta-gal-marked CD8+ T cell population.  相似文献   

18.
CTL responses against multiple hepatitis C virus (HCV) epitopes were detected in 7 of 29 (24.1%) healthy family members (HFM) persistently exposed to chronically HCV-infected patients (HCV-HFM). These precursor CTL were at very low or undetectable frequencies, as determined by limiting dilution analysis. However, when HCV-specific effector CD8+ T cells, freshly isolated from PBMC of HCV-HFM, were assessed by a sensitive enzyme-linked immunospot assay, their frequencies were severalfold higher than those of precursor CTL. These results indicate that the two assays detect two functionally distinct T cell populations and that the effector cells are not assayed by the 51Cr-release assay. Furthermore, the combination of cell depletion and enzyme-linked immunospot analyses showed that the effector cells were confined into a CD8+ CD45RO+ CD28- population. The persistence of effector CD8+ T cells specific for both the structural and nonstructural viral proteins in uninfected HCV-HFM, suggest that: 1) an immunological memory is established upon a subclinical infection without any evidence of hepatitis, in a large cohort of HCV-exposed individuals; 2) because these cells required neither restimulation nor the addition of particular cytokines in vitro for differentiating in effectors, they should be capable of prompt HCV-specific effector function in vivo, possibly providing antiviral protection; and 3) the maintenance of effector T cell responses may be sustained by persisting low-level stimulation induced by inapparent infections.  相似文献   

19.
Despite the accepted role for CD4+ T cells in immune control, little is known about the development of Ag-specific CD4+ T cell immunity upon primary infection. Here we use MHC class II tetramer technology to directly visualize the Ag-specific CD4+ T cell response upon infection of mice with Moloney murine sarcoma and leukemia virus complex (MoMSV). Significant numbers of Ag-specific CD4+ T cells are detected both in lymphoid organs and in retrovirus-induced lesions early during infection, and they express the 1B11-reactive activation-induced isoform of CD43 that was recently shown to define effector CD8+ T cell populations. Comparison of the kinetics of the MoMSV-specific CD4+ and CD8+ T cell responses reveals a pronounced shift toward CD8+ T cell immunity at the site of MoMSV infection during progression of the immune response. Consistent with an important early role of Ag-specific CD4+ T cell immunity during MoMSV infection, CD4+ T cells contribute to the generation of virus-specific CD8+ T cell immunity within the lymphoid organs and are required to promote an inflammatory environment within the virus-infected tissue.  相似文献   

20.
Mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) clear infectious virus; nevertheless, virus persists in the CNS as noninfectious RNA, resulting in ongoing primary demyelination. Phenotypic and functional analysis of CNS infiltrating cells during acute infection revealed a potent regional CD8+ T cell response comprising up to 50% virus-specific T cells. The high prevalence of virus-specific T cells correlated with ex vivo cytolytic activity and efficient reduction in viral titers. Progressive viral clearance coincided with the loss of cytolytic activity, but retention of IFN-gamma secretion and increased expression of the early activation marker CD69, indicating differential regulation of effector function. Although the total number of infiltrating T cells declined following clearance of infectious virus, CD8+ T cells, both specific for the dominant viral epitopes and of unknown specificity, were retained within the CNS, suggesting an ongoing T cell response during persistent CNS infection involving a virus-independent component. Reversed immunodominance within the virus-specific CD8+ T cell population further indicated epitope-specific regulation, supporting ongoing T cell activation. Even in the absence of infectious virus, the CNS thus provides an environment that maintains both unspecific and Ag-specific CD8+ T cells with restricted effector function. Chronic T cell stimulation may thus play a role in preventing viral recrudescence, while increasing the risk of pathological conditions, such as demyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号