首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH‐d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

2.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH-d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

3.
Acrylamide (ACR) is a known industrial neurotoxic chemical. Evidence suggests that ACR neurotoxic effect is related to brain neurotransmission disturbances. Since nitric oxide (NO) acts as a neurotransmission modulator and is produced by nitric oxide synthase (NOS), the neuronal NOS (nNOS) and inducible NOS (iNOS) expression pattern were determined in rat cerebral cortex and striatum after subchronic exposure to ACR. Using immunocytochemistry, the neuronal count of nNOS or optical density of iNOS from sections at three coronal levels, bregma 1.0, -0.4, and -2.3 mm, were compared between ACR-treated and control rats. At all three levels, nNOS expressions were uniformly decreased in most of the neocortical subregions following the treatment of ACR. At bregma level 1.0 mm, total numbers of nNOS expressing neurons were significantly decreased to 58.7% and 64.7% of the control in the cortex and striatum of ACR-treated rats, respectively. However, at the bregma level -2.3 mm, ACR treatment did not produce a significant difference in the numbers of nNOS expressing neurons both in the cortex and striatum. Contrary to nNOS, iNOS expressions were consistently increased to approximately 32% in the neocortex and 25% in the striatum, following the subchronic ACR treatment. These data suggest that subchronic ACR exposure involves compensatory mechanism on nNOS and iNOS expression to maintain the homeostasis of NO at the rostral part of the neocortex and the striatum. However, in the caudal brain, increased iNOS expression did not suppress nNOS expression. Therefore, the present study is consistent with the hypothesis that ACR toxicity is mediated through the disturbance to the NO signaling pathway and exhibits a rostrocaudal difference through the differential expressions of nNOS and iNOS in the neocortex and the striatum.  相似文献   

4.
Nitric oxide (NO) is a free radical with multiple functions in the nervous system. NO plays an important role in the mechanisms of neurodegenerative diseases including Alzheimer's disease. The main source of NO in the brain is an enzymatic activity of nitric oxide synthase (NOS). The aim of the present study was to analyze the expression and activity of both neuronal (nNOS) and inducible (iNOS) isoenzymes in the cerebral cortex and hippocampus of rats after intracerebroventricular administration of amyloid-beta (A beta) peptide fragment A beta(25-35). NADPHd histochemistry as well as immunohistochemistry were also used to investigate nNOS and iNOS expression in rat brain. The data presented here show that A beta(25-35) did not influence levels of nNOS or iNOS mRNA or protein expression in both structures studied. A beta(25-35) activated nNOS in the cerebral cortex and hippocampus without effect on iNOS activity. A beta(25-35) decreased the number of NADPHd-expressing neurons in the neocortex, but it did not significantly influence the number NADPHd-positive cells in the hippocampus. The peptide had no effect on the number of nNOS containing cells. We hypothesize that increased synthesis of NO induced by A beta(25-35) is related to qualitative alterations of nNOS molecule, but not to changes in NOS protein expression.  相似文献   

5.
In this study, the effect of aging on nitric oxide synthases (NOS) was investigated in homogenates and cytosolic fractions from hippocampus, brain cortex and cerebellum of adult, old adult and old Wistar rats (3-4, 14, and 24 months old, respectively). Our results indicate the enhancement of Ca(2+) and calmoduline-dependent NOS activity in all investigated aged brain parts. Significantly higher NOS activity was found in the cerebellum.In the absence of Ca(2+) or in the presence of N-nitro-L-arginine (NNLA) the activity of NOS was absent. Inhibitor of constitutive NOS isoforms which preferentially inhibits neuronal NOS (nNOS), 7-nitroindazole, decreased NOS activity by 60 and 75% in adult and aged brain, respectively. However, using RT-PCR a significantly lower amount of mRNA for nNOS was detected in hippocampus. The ratio of NOS activity to nNOS mRNA was significantly higher in hippocampus and cerebellum of aged brain. No expression of the gene for inducible NOS was observed in adult and aged brain.These results indicate that probably nNOS is responsible for higher NOS activity in aged brain. Our data suggest that alteration of nNOS phosphorylation state may be responsible for the activation of NOS in aged brain. The down-regulation of nNOS mRNA expression may be an adaptive mechanism that protects the brain against excessive NO release.  相似文献   

6.
The aim of the study was to investigate the interaction between nitric oxygenase (NOS)/nitric oxide (NO) and heme oxygenase (HO)/carbon monoxide (CO) system in the pathogenesis of recurrent febrile seizures (FS). On a rat model of recurrent FS, the ultrastructure of hippocampal neurons was observed under electron microscopy, and expression of neuronal NOS (nNOS) in hippocampus and NO formation in plasma were examined after treatment with ZnPP-IX, an HO-1 inhibitor. In the ultrastructure of hippocampal neurons, the expression of HO-1 in hippocampus and CO formation in plasma were examined after treatment with L-NAME, a NOS inhibitor. We found that hippocampal neurons were injured after recurrent FS. The gene and protein expression of nNOS and HO-1 increased markedly in hippocampus in FS rats, while CO formation in plasma increased markedly and the concentration of NO in plasma increased slightly. ZnPP-IX could worsen the neuronal damage of recurrent FS rats. However, it further increased the expression of nNOS and endogenous production of NO obviously. L-NAME alleviated the neuronal damage of recurrent FS rats, but decreased the expression of HO-1 and CO formation. The results of this study suggested that endogenous NOS/NO and HO/CO systems might interact with each other and therefore play an important regulating role in recurrent FS brain damage.  相似文献   

7.
小鼠脑内NO/NOS-cGMP信号系统与吗啡依赖形成的机制   总被引:9,自引:2,他引:7  
Fang F  Cao Q  Song FJ  Wang YH  Liu JS 《生理学报》1999,(2):133-139
本文观察了吗啡依赖小鼠脑组织cGMP含量,钙依赖性及非钙依赖性NOS活性的变化,蛋白激酶A对NOS活性的磷酸化调节以及一氧化氮合酶(NOS)抑制剂对吗啡依赖形成的影响。结果发现:(1)小脑,纹状体,海马及大脑皮质cGMP含量明显下降;(2)纹状体及大脑皮质钙依赖性NOS活性明显升高,而IP20(PKA抑制剂)可抑制比变化,小脑及海马依赖性NOS活性及以上各脑区非钙依赖性NOS活性无明显变化;(3)  相似文献   

8.
目的探讨大鼠局灶性脑缺血再灌注后海马神经细胞一氧化氮合酶(NOS)的表达与神经细胞凋亡的关系及中药复方丹参的保护作用。方法采用大脑中动脉内栓线阻断法(MCAO)造成局灶性脑缺血再灌注模型。用原位细胞凋亡检测方法观察海马神经细胞凋亡;用免疫组织化学方法检测大鼠海马神经细胞(nNOS、iNOS)的表达并做图像分析。结果与假手术对照组比较,脑缺血再灌注2h后缺血侧海马CA1、CA3区神经细胞nNOS、iNOS表达升高,并出现神经细胞凋亡,随着再灌注时间的延长,神经细胞iNOS的表达明显增强,凋亡神经细胞数逐渐增多,至24h达高峰,但神经细胞nNOS的表达并未见明显增强。复方丹参保护组神经细胞nNOS、iNOS的表达和凋亡神经细胞数明显低于缺血再灌组(P<0.01)。结论脑缺血再灌注后缺血侧海马CA1、CA3区神经细胞nNOS的表达增强,iNOS的表达显著升高,使NO的形成增加,这可能是介导脑缺血再灌注后神经细胞凋亡的机制之一。复方丹参具有下调神经细胞nNOS、iNOS的表达,减少NO的生成,抑制细胞凋亡,减轻缺血再灌注对大鼠海马损伤的作用。  相似文献   

9.
目的探讨急性给锂小鼠大脑皮层一氧化氮合酶(NOS)活性与蛋白表达的时程变化及其意义.方法选用昆明小鼠40只,分为对照组和腹腔注射1.5mmol/Kg氯化锂(LiCl)即刻、0.5h、1h、3h、6h、12h、24h组,每组5只.采用NADPH-d黄递酶组织化学和ABC免疫组化法,观察急性给锂后不同时程小鼠大脑皮层NOS和nNOS阳性神经元数目的变化.结果急性给锂即刻小鼠大脑皮层NOS和nNOS阳性神经元数目明显增加(P<0.01),1h后达到高峰(P<0.01),6h和12h恢复到正常水平(P>0.05),24hNOS阳性神经元又明显增高(P<0.01),nNOS阳性神经元处于正常水平(P>0.05).结论本实验提示急性给锂对小鼠大脑皮层NOS和nNOS阳性神经元数目有一定影响,这种变化可能是锂影响脑发育及锂的神经毒性的机理之一.  相似文献   

10.
Although many reports have argued a role for nitric oxide (NO) during postnatal development, there has been no combined demonstration in the cerebral cortex and hippocampus. We have investigated the distribution and morphology of neurons and fibers expressing neuronal NO synthase (nNOS) in the cerebral cortex and hippocampal formation of rats during the postnatal development, and correlated these findings with developmental events taking place in these regions. In the cerebral cortex, the nNOS-immunoreactive cells could be divided into two classes : heavily stained neurons and lightly stained neurons. For the lightly stained nNOS-positive neurons, only the cell bodies were observed, whereas for the heavily stained neurons, the cell bodies and their dendrites were visible. During the postnatal days, heavily stained neurons reached their typical morphology in the second week and appeared in all layers except for layer I. In the hippocampus, there was a transient expression of nNOS in the pyramidal cell layer at P3â€P7, and this expression disappeared during following days. The adult pattern of staining developed gradually during the postnatal period. This study suggested that these alterations might reflect a region-specific role of NO and a potential developmental role in the postnatal cerebral cortex and hippocampus  相似文献   

11.
We have previously demonstrated that psychological stress (PS) can cause iron to accumulate in the cerebral cortex, hippocampus, and striatum of rats. However, why iron accumulates and in what oxidation state iron it accumulates in the brain of PS-exposed rats has not been well elucidated. In the present study, we investigated the influence of PS on the low molecular weight iron pool (LMWIP) in the rat brain. The results showed that: (1) PS significantly expanded LMWIP in the cerebral cortex, hippocampus, and striatum in rats; (2) PS caused derangement of pyramidal cells and reduced the layers of pyramidal CA1 and CA2 neurons; (3) PS exposure greatly lowered the expression of ferritin (Fn) and hephaestin (HP) in the rat cortex and hippocampus; and (4) PS decreased superoxide dismutase, glutathione peroxidase, and glutathione level and increased malondialdehyde level in the cerebral cortex, hippocampus, and striatum in rats. These results indicated that PS could expand LMWIP significantly, which may be attributed to PS-induced decrease in Fn, HP expression, and the subsequent reduction in iron storage and utilization, and expansion of LMWIP could in turn lead to aggravation of oxidative damage.  相似文献   

12.
This study tested the hypothesis that adaptation to intermittent hypoxia (AIH) can prevent overproduction of nitric oxide (NO) in brain and neurodegeneration induced by beta-amyloid (Aβ) toxicity. Rats were injected with a Aβ protein fragment (25–35) into the nucleus basalis magnocellularis. AIH (simulated altitude of 4000 m, 14 days, 4 h daily) was produced prior to the Aβ injection. A passive, shock-avoidance, conditioned response test was used to evaluate memory function. Degenerating neurons were visualized in stained cortical sections. NO production was evaluated in brain tissue by the content of nitrite and nitrate. Expression of nNOS, iNOS, and eNOS was measured in the cortex and the hippocampus using Western blot analysis. 3-Nitrotyrosine formation, a marker of protein nitration, was quantified by slot blot analysis. Aβ injection impaired memory of rats; AIH significantly alleviated this disorder. Histological examination confirmed the protective effect of AIH. Degenerating neurons, which were numerous in the cortex of Aβ-injected, unadapted rats, were essentially absent in the brain of hypoxia-adapted rats. Injections of Aβ resulted in significant increases in NOx and in expression of all NOS isoforms in brain; AIH blunted these increases. NO overproduction was associated with increased amounts of 3-nitrotyrosine in the cortex and hippocampus. AIH alone did not significantly influence tissue 3-nitrotyrosine, but significantly restricted its increase after the Aβ injection. Therefore, AIH affords significant protection against experimental Alzheimer’s disease, and this protection correlates with restricted NO overproduction.  相似文献   

13.
新生大鼠缺血缺氧后脑内一氧化氮合酶的动态表达   总被引:3,自引:0,他引:3  
实验采用生后14天Wistar大鼠缺血缺氧(HI)动物模型。用免疫组织化学方法观察HI复苏(HI/R0后前脑一氧化氮合酶动态表达。结果显示;神经元一氧化氮合酶(nNOS)阳性神经元主要分布于新生大鼠大脑皮层的Ⅲ-Ⅳ层。尾状核,隔核及嗅结节,HI/R早期其表达水平无明显变化;复苏48小时及5天后,可分别在右侧大脑顶皮层或右侧大脑顶皮层和尾状核区出现梗塞灶,该区nNOS阳性神经元明显减少,而诱导型一氧化氮合酶(iNOS)阳性细胞在HI/R后12小时始现于损伤侧的侧脑室;随时间的推移在损伤侧缰核,皮层,尾状核以及丘脑背外侧核,丘脑腹侧核可见iNOS阳性细胞逐渐增多并染色加深,用识别单核巨噬细胞的克隆ED1单克隆抗体检测可见ED1阳性细胞出现的时间和在脑区的分布与iNOS阳性细胞相似,本实验提示,在局灶性脑缺血缺氧早期,脑内NO的释放不依赖于nNOS阳性神经元或iNOS阳性细胞,而在局灶性脑缺血缺氧晚期,iNOS阳性细胞产生的NO可能参与了脑损伤的过程。  相似文献   

14.
Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, and NO synthase (NOS) activity assays in adult rats submitted for 30 min to hypoxia, in a hypobaric chamber at a simulated altitude of 38,000 ft (11000 m) (154.9 mm Hg). The cerebral cortex was studied after different survival times, 0 and 24 h, 5, 8, 15, and 30 days of reoxygenation. This situation led to morphological alterations in the large type I interneurons, as well as immunoreactive changes in the appearance and number of the small neurons (type II), both containing neuronal NOS (nNOS). Some of these small neurons showed immunoreactive cytoplasm and short processes; others, the more numerous during all reoxygenation periods, contained the immunoreactive product mainly related to a perinuclear ring. Ultrastructurally, these small neurons exhibited changes in nuclear structures as in the shape of the nuclear membrane, in the distribution of heterochromatin, and in the nucleolar morphology. The reaction product for nitrotyrosine, as a marker of protein nitration, showed modifications in distribution of the immunoreactive product. No expression was found for inducible NOS (iNOS). All these modifications were accompanied by increased nNOS and nitrotyrosine production as demonstrated by Western blotting and calcium-dependent activity, returning to control conditions after 30 days of reoxygenation, suggesting a reversible NO mechanism of action.  相似文献   

15.
探讨应激状态下大鼠脑边缘系统内一氧化氮合酶 (Nitricoxidesynthase,NOS )阳性神经元的变化及这种变化与脑神经元损伤发生的关系。采用捕食应激动物模型 ,将 80只雄性SD大鼠随机分为 3组 :对照组 (n =2 0 )、单纯捕食应激组 (n =30 )、加强捕食应激组 (n =30 )。采用还原型尼克酰胺腺嘌呤二核苷酸黄递酶(NADPH d)组织化学方法 ,研究应激后 1、 3、 6、 12、 2 1、 30dNOS阳性神经元的分布规律。结果表明 :对照组NOS活性平稳 ,但应激后NOS活性变化明显。与对照组比较 ,应激 1- 3d ,单纯应激组和加强应激组NOS阳性神经元数目在皮质、纹状体、海马、下丘脑等部位增多 ,即NOS活性升高 ;第 4 - 12d ,NOS活性进一步升高 ,除皮质外与对照组相比具显著性差异 (P <0 0 1) ;其中 ,应激单纯组和加强组海马和下丘脑室旁核分别在第 6d、第 12dNOS活性最高。从第 13d起NOS阳性神经元的活性开始逐渐降低 ;到第 30dNOS活性下降明显 ,但其活性仍高于对照组 (P <0 0 5 )。对于同一时间点而言 ,与对照组相比 ,加强应激组的NOS活性变化大于相应的单纯应激组。结果提示 :NOS活性程度与心理应激程度密切相关 ;应激过程中大鼠脑边缘系统过量增多的NO产生的神经毒性可能是应激导致大鼠脑边缘系统神经元受损的原因之一  相似文献   

16.
It has been demonstrated that the exposure of biological systems to magnetic fields (MFs) can produce several beneficial effects: tissue recovery in chronic wounds, re‐establishment of blood circulation after tissue ischemia or in necrotic tissues, improvement after epileptic episodes, angiogenesis, etc. In the current study, the effects of extremely low frequency (ELF) MF on the capillaries of some circumventricular organs (CVOs) are demonstrated; a vasodilator effect is reported as well as an increase in their permeability to non‐liposoluble substances. For this study, 96 Wistar male rats (250 g body mass) were used and divided into three groups of 32 rats each: a control group (no treatment); a sham ELF‐MF group; and an experimental group subjected to ELF‐MF (120 Hz harmonic waves and 0.66 mT, root mean square) by the use of Helmholtz coils. All animals were administered colloidal carbon (CC) intravenously to study, through optical and transmission electron microscopy, the capillary permeability in CVOs and the blood–brain barrier (BBB) in brain areas. An increase in capillary permeability to CC was detected in the ELF‐MF‐exposed group as well as a significant increase in vascular area (capillary vasodilation); none of these effects were observed in individuals of the control and sham ELF‐MF groups. It is important to investigate the mechanisms involved in the phenomena reported here in order to explain the effects of ELF‐MF on brain vasculature. Bioelectromagnetics 34:145–155, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Influence of a new anti-oxidant compound H-290/51 on expression of nitric oxide synthase (NOS) and heme oxygenase (HO) enzymes responsible for nitric oxide (NO) and carbon monoxide (CO) production, respectively was examined in the CNS following heat stress in relation to cell injury. Exposure of rats to 4h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator (relative humidity 50-55%, wind velocity 20-25cm/sec) resulted in profound edema and cell injury in many parts of the cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus and brain stem. Immunostaining of constitutive isoforms of neuronal NOS (nNOS) and HO-2 revealed marked upregulation in damaged and distorted neurons located within the edematous brain regions. Pretreatment with H-290/51 (50 mg/kg, p.o., 30 min before heat stress) significantly reduced the edematous swelling and cell injury and resulted in a marked attenuation of nNOS and HO-2 expression. These observations suggest that upregulation of NOS and HO is associated with cell injury, and the antioxidant compound H-290/51 is neuroprotective in heat stress.  相似文献   

18.
AimsNitric oxide (NO) is synthesized from L-arginine (L-Arg) by three different isoforms of NO synthase (NOS), i.e. the constitutive neuronal and endothelial NOS (nNOS and eNOS) and the inducible NOS (iNOS). NO has been involved in the pathophysiology of epilepsy, but available data are conflicting and the actual role of NO in epilepsy still remains to be clarified. In this study we investigated the basal and post-seizure levels of constitutive NOS (cNOS) activity as well as the expression of the cNOS isoforms across brain regions in a novel model of epilepsy.Main methodscNOS activity was assessed in various brain areas along the rostro-caudal axis in control wild type hamsters, unstimulated generalized audiogenic seizure prone hamsters, Salamanca strain, GASH:Sal and GASH:Sal after 10 sound-induced epileptic seizures. Additionally, Western blot experiments for nNOS and eNOS were performed in those areas where relevant changes in cNOS activity were found.Key findingsIn the GASH:Sal, cNOS activity increased in the mesencephalic areas studied while cNOS activity decreased in both the striatum and cerebral cortex after 10 sound-induced epileptic seizures. nNOS (but not eNOS) expression paralleled the variations in cNOS activity. The same sound stimulation had no effect on control hamsters.SignificanceThese results suggest a different NOS response in the regions close to the original epileptic focus (caudal, in our auditory model) versus the remote areas (rostral) possibly recruited at later stages or after repeated crises. These findings may account for some of the discrepancies found regarding the role of NO in epilepsy.  相似文献   

19.
The effects of long‐term extremely low‐frequency magnetic field (ELF‐MF) exposure on bone formation and biochemical markers were investigated in ovariectomized rats. Sixty mature female Sprague–Dawley rats were randomly divided into four different groups (n = 15): (i) unexposed control (CTL); (ii) ovariectomized only (OVX); (iii) non‐ovariectomized, exposed (SHAM + ELF‐MF); and (iv) ovariectomized, exposed (OVX + ELF‐MF). The third and fourth groups were exposed to 1.5 mT ELF‐MF for 4 h a day for 6 months. Bone mineral density (BMD) was determined using dual energy X‐ray absorption (DEXA) measurements. The formation and resorption of bone were evaluated using bone‐specific alkaline phosphatase (BAP), osteocalcin, osteoprotogerin, and N‐telopeptide. After 6 months of ELF‐MF therapy, BMD values were significantly lower in the OVX group and higher in the OVX + ELF‐MF and SHAM + ELF‐MF groups than they were before therapy (P < 0.001). Although there was no significant difference in BMD values among the groups before therapy, the BMD values increased significantly after 6 months in the OVX + ELF‐MF and SHAM + ELF‐MF groups and were reduced in the OVX group compared to the CTL group (P < 0.001). The concentrations of BAP, osteocalcin, osteoprotogerin, and N‐telopeptide in the three experimental groups also changed in a significant way compared to the CTL group. The results of the present study suggest that osteoporosis can be inhibited by ELF‐MF stimulation treatments. It was also concluded that ELF‐MF may be useful in the prevention of osteoporosis in ovariectomized rats. Bioelectromagnetics 33:543–549, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号