共查询到20条相似文献,搜索用时 15 毫秒
1.
ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites. 相似文献
2.
Sorci-Thomas MG Owen JS Fulp B Bhat S Zhu X Parks JS Shah D Jerome WG Gerelus M Zabalawi M Thomas MJ 《Journal of lipid research》2012,53(9):1890-1909
This report details the lipid composition of nascent HDL (nHDL) particles formed by the action of the ATP binding cassette transporter A1 (ABCA1) on apolipoprotein A-I (apoA-I). nHDL particles of different size (average diameters of ~ 12, 10, 7.5, and <6 nm) and composition were purified by size-exclusion chromatography. Electron microscopy suggested that the nHDL were mostly spheroidal. The proportions of the principal nHDL lipids, free cholesterol, glycerophosphocholine, and sphingomyelin were similar to that of lipid rafts, suggesting that the lipid originated from a raft-like region of the cell. Smaller amounts of glucosylceramides, cholesteryl esters, and other glycerophospholipid classes were also present. The largest particles, ~ 12 nm and 10 nm diameter, contained ~ 43% free cholesterol, 2-3% cholesteryl ester, and three apoA-I molecules. Using chemical cross-linking chemistry combined with mass spectrometry, we found that three molecules of apoA-I in the ~ 9-14 nm nHDL adopted a belt-like conformation. The smaller (7.5 nm diameter) spheroidal nHDL particles carried 30% free cholesterol and two molecules of apoA-I in a twisted, antiparallel, double-belt conformation. Overall, these new data offer fresh insights into the biogenesis and structural constraints involved in forming nascent HDL from ABCA1. 相似文献
3.
4.
ATP binding cassette transporter A1 - key roles in cellular lipid transport and atherosclerosis 总被引:8,自引:0,他引:8
Srivastava N 《Molecular and cellular biochemistry》2002,237(1-2):155-164
ATP-binding cassette transporter A1 (ABCA1) was recently recognized as the mutant molecule responsible for Tangier disease with low HDL levels, accumulation of cholesteryl esters in tissues, and increased risk of cardiovascular disease. Extensive studies for the past 2 years have recognized the critical role of ABCA1 in cholesterol and phospholipid trafficking. Since the removal of cholesterol from tissues is a key step in the prevention of atherosclerosis, significant attention has been focused on this molecule. Natural ABCA1 mutations in Tangier disease (TD) patients and WHAM chickens together with induced mutation in ABCA1 knock-out mice unequivocally established the important role of ABCA1 in maintaining circulating HDL levels and promoting cholesterol efflux from the arterial wall. Mice lacking ABCA1 showed similar phenotypes observed in Tangier disease patients with low levels of HDL. Further understanding of the roles of ABCA1 in lipid transport and atherosclerosis became clear from studies with ABCA1 transgenic mice. These mice showed enhanced cholesterol efflux from macrophages and reduced atherosclerotic lesion formation. The promoter of the ABCA1 gene has been mapped to a large extent, with the exception of cAMP response element. The present review summarizes recent developments on the role of ABCA1 in cholesterol efflux and prevention of atherosclerosis. Given the antiatherogenic properties of ABCA1, this molecule can serve as an appropriate target for developing drugs to treat individuals with low levels of HDL. 相似文献
5.
6.
Nofer JR Remaley AT Feuerborn R Wolinnska I Engel T von Eckardstein A Assmann G 《Journal of lipid research》2006,47(4):794-803
It has been suggested that the signal transduction initiated by apolipoprotein A-I (apoA-I) activates key proteins involved in cholesterol efflux. ABCA1 serves as a binding partner for apoA-I, but its participation in apoA-I-induced signaling remains uncertain. We show that the exposure of human fibroblasts to ABCA1 ligands (apolipoproteins and amphipathic helical peptides) results in the generation of intracellular signals, including activation of the small G-protein Cdc42, protein kinases (PAK-1 and p54JNK), and actin polymerization. ApoA-I-induced signaling was abrogated by glyburide, an inhibitor of the ABC transporter family, and in fibroblasts from patients with Tangier disease, which do not express ABCA1. Conversely, induction of ABCA1 expression with the liver X receptor agonist, T0901317, and the retinoid X receptor agonist, R0264456, potentiated apoA-I-induced signaling. Similar effects were observed in HEK293 cells overexpressing ABCA1-green fluorescent protein (GFP) fusion protein, but not ABCA1-GFP (K939M), which fails to hydrolyze ATP, or a nonfunctional ABCA1-GFP with a truncated C terminus. We further found that Cdc42 coimmunoprecipitates with ABCA1 in ABCA1-GFP-expressing HEK293 cells exposed to apoA-I but not in cells expressing ABCA1 mutants. We conclude that ABCA1 transduces signals from apoA-I by complexing and activating Cdc42 and downstream kinases and, therefore, acts as a full apoA-I receptor. 相似文献
7.
The assembly of HDL by helical apolipoprotein and cellular lipid was studied using HEK293 cells to which ecdysone-inducible human ABCA1 or human ABCA7 was transfected. Expression of both ABCA1 and ABCA7 was induced linearly proportional to ponasterone A concentration in the medium. In the experimental conditions used, the ABC protein expression levels limited the rate of lipid release when the apolipoprotein concentration was high, and the apolipoprotein concentration was rate-limiting when the ABC protein expression levels were high. When ABCA1 expression increased in conditions in which it was rate-limiting, relative cholesterol content to phospholipid increased in the HDL produced. In contrast, it was constant when ABCA7 expression increased. To investigate the background mechanism, the HDL particles were analyzed by density gradient ultracentrifugation and high performance lipid chromatography. The ABCA1-mediated reaction produced two distinct HDLs, large cholesterol-rich and small cholesterol-poor particles, and the ABCA7-mediated reaction generated mostly small cholesterol-poor particles. The increase of HDL assembly with the increase of ABCA1 expression was predominant in large cholesterol-rich particles, whereas only small cholesterol-poor HDL increased as ABCA7 expression increased. We conclude that ABCA1 generates cholesterol-rich and cholesterol-poor HDL and that the former is more prominently dependent on the increase of ABCA1 expression. ABCA7 produces this HDL subfraction only as a very minor component. 相似文献
8.
Risa Omura Kohjiro Nagao Norihiro Kobayashi Kazumitsu Ueda Hiroyuki Saito 《Journal of lipid research》2014,55(11):2423-2431
ABCA1 mediates the efflux of cholesterol and phospholipids into apoA-I to form HDL, which is important in the prevention of atherosclerosis. To develop a novel method for the evaluation of HDL formation, we prepared an apoA-I-POLARIC by labeling the specific residue of an apoA-I variant with a hydrophobicity-sensitive fluorescence probe that detects the environmental change around apoA-I during HDL formation. apoA-I-POLARIC possesses the intact ABCA1-dependent HDL formation activity and shows 4.0-fold higher fluorescence intensity in HDL particles than in the lipid-free state. Incubation of apoA-I-POLARIC with ABCA1-expressing cells, but not ABCA1-non-expressing cells, caused a 1.7-fold increase in fluorescence intensity. Gel filtration analysis demonstrated that the increase in fluorescence intensity of apoA-I-POLARIC represents the amount of apoA-I incorporated into the discoidal HDL particles rather than the amount of secreted cholesterol. THP-1 macrophage-mediated HDL formation and inhibition of HDL formation by cyclosporine A could also be measured using apoA-I-POLARIC. Furthermore, HDL formation-independent lipid release induced by microparticle formation or cell death was not detected by apoA-I-POLARIC. These results demonstrate that HDL formation by ABCA1-expressing cells can be specifically detected by sensing hydrophobicity change in apoA-I, thus providing a novel method for assessing HDL formation and screening of the HDL formation modulator. 相似文献
9.
Abe-Dohmae S Kato KH Kumon Y Hu W Ishigami H Iwamoto N Okazaki M Wu CA Tsujita M Ueda K Yokoyama S 《Journal of lipid research》2006,47(7):1542-1550
Serum amyloid A (SAA) is an amphiphilic helical protein that is found associated with plasma HDL in various pathological conditions, such as acute or chronic inflammation. Cellular lipid release and generation of HDL by this protein were investigated, in comparison with the reactions by apolipoprotein A-I (apoA-I) and several types of cells that appear with various specific profiles of cholesterol and phospholipid release. SAA mediated cellular lipid release from these cells with the same profile as apoA-I. Upregulation of cellular ABCA1 protein by liver X receptor/retinoid X receptor agonists resulted in an increase of cellular lipid release by apoA-I and SAA. SAA reacted with the HEK293-derived clones that stably express human ABCA1 (293/2c) or ABCA7 (293/6c) to generate cholesterol-containing HDL in a similar manner to apoA-I. Dibutyryl cyclic AMP and phorbol 12-myristate 13-acetate, which differentiate apoA-I-mediated cellular lipid release between 293/2c and 293/6c, also exhibited the same differential effects on the SAA-mediated reactions. No evidence was found for the ABCA1/ABCA7-independent lipid release by SAA. Characterization of physicochemical properties of the HDL revealed that SAA-generated HDL particles had higher density, larger diameter, and slower electrophoretic mobility than those generated by apoA-I. These results demonstrate that SAA generates cholesterol-containing HDL directly with cellular lipid and that the reaction is mediated by ABCA1 and ABCA7. 相似文献
10.
Vaisman BL Demosky SJ Stonik JA Ghias M Knapper CL Sampson ML Dai C Levine SJ Remaley AT 《Journal of lipid research》2012,53(1):158-167
The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC. 相似文献
11.
Potential role of ABCA7 in cellular lipid efflux to apoA-I 总被引:4,自引:0,他引:4
Linsel-Nitschke P Jehle AW Shan J Cao G Bacic D Lan D Wang N Tall AR 《Journal of lipid research》2005,46(1):86-92
ABCA7 is homologous to ABCA1 and has recently been shown in cell culture to bind apolipoprotein A-I (apoA-I) and to promote the efflux of phospholipids. However, it is not known if ABCA7 promotes lipid efflux in vivo. When expressed in HEK293 cells, both human and mouse ABCA7 promoted phospholipid efflux to apoA-I but no detectable cholesterol efflux. However, genetic knockdown of ABCA7 in mouse peritoneal macrophages did not affect phospholipid or cholesterol efflux to apoA-I. Moreover, in ABCA1-knockout macrophages, there was no detectable apoA-I-stimulated phospholipid efflux, inconsistent with a residual role of ABCA7. In contrast to plasma membrane localization of ABCA7 in transfected embryonic kidney cells, immunofluorescence microscopy of endogenous ABCA7 in macrophages showed a predominantly intracellular localization of the protein. Strikingly, immunofluorescence studies of adult mouse kidney revealed an apical brush border membrane localization of ABCA7 in the proximal tubule, suggesting that ABCA7 may come in contact with apoA-I in the glomerular filtrate. Although ABCA7 does not contribute to apolipoprotein-mediated lipid efflux in resting macrophages, its cell surface location in the kidney suggests that it could serve such a role in tissue microenvironments. 相似文献
12.
Duong PT Weibel GL Lund-Katz S Rothblat GH Phillips MC 《Journal of lipid research》2008,49(5):1006-1014
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule. 相似文献
13.
Tsujita M Wu CA Abe-Dohmae S Usui S Okazaki M Yokoyama S 《Journal of lipid research》2005,46(1):154-162
The mechanism for the assembly of HDL with cellular lipid by ABCA1 and helical apolipoprotein was investigated in hepatocytes. Both HepG2 cells and mouse primary culture hepatocytes produced HDL with apolipoprotein A-I (apoA-I) whether endogenously synthesized or exogenously provided. Probucol, an ABCA1 inactivator, inhibited these reactions, as well as the reversible binding of apoA-I to HepG2. Primary cultured hepatocytes of ABCA1-deficient mice also lacked HDL production regardless of the presence of exogenous apoA-I. HepG2 cells secreted apoA-I into the medium even when ABCA1 was inactivated by probucol, but it was all in a free form as HDL production was inhibited. When a lipid-free apoA-I-specific monoclonal antibody, 725-1E2, was present in the culture medium, production of HDL was suppressed, whether with endogenous or exogenously added apoA-I, and the antibody did not influence HDL already produced by HepG2 cells. We conclude that the main mechanism for HDL assembly by endogenous apoA-I in HepG2 cells is an autocrine-like reaction in which apoA-I is secreted and then interacts with cellular ABCA1 to generate HDL. 相似文献
14.
Ji A Wroblewski JM Cai L de Beer MC Webb NR van der Westhuyzen DR 《Journal of lipid research》2012,53(3):446-455
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI. 相似文献
15.
Structural modification of plasma HDL by phospholipids promotes efficient ABCA1-mediated cholesterol release 总被引:2,自引:0,他引:2
Hajj Hassan H Blain S Boucher B Denis M Krimbou L Genest J 《Journal of lipid research》2005,46(7):1457-1465
It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease. 相似文献
16.
Xueting Jin Sebastian R. Freeman Boris Vaisman Ying Liu Janet Chang Neta Varsano Lia Addadi Alan Remaley Howard S. Kruth 《Journal of lipid research》2015,56(9):1720-1726
We previously reported that cholesterol-enriched macrophages excrete cholesterol into the extracellular matrix. A monoclonal antibody that detects cholesterol microdomains labels the deposited extracellular particles. Macrophage deposition of extracellular cholesterol depends, in part, on ABCG1, and this cholesterol can be mobilized by HDL components of the reverse cholesterol transport process. The objective of the current study was to determine whether ABCA1 also contributes to macrophage deposition of extracellular cholesterol. ABCA1 functioned in extracellular cholesterol deposition. The liver X receptor agonist, TO901317 (TO9), an ABCA1-inducing factor, restored cholesterol deposition that was absent in cholesterol-enriched ABCG1−/− mouse macrophages. In addition, the ABCA1 inhibitor, probucol, blocked the increment in cholesterol deposited by TO9-treated wild-type macrophages, and completely inhibited deposition from TO9-treated ABCG1−/− macrophages. Lastly, ABCA1−/− macrophages deposited much less extracellular cholesterol than wild-type macrophages. These findings demonstrate a novel function of ABCA1 in contributing to macrophage export of cholesterol into the extracellular matrix. 相似文献
17.
18.
Mukhamedova N D'Souza W Low H Kesani R Chimini G Sviridov D 《Biochemical and biophysical research communications》2011,(3):446-449
ABCA1 is a key element of cellular cholesterol homeostasis. ApoE K/O mice fed with high-fat diet were infused with anti-ABCA1 antibody or control IgM. Infusion of anti-ABCA1 antibody led to 72% increase in the area of atherosclerotic plaque in aorta. After 16 weeks on high-fat diet plasma level of high density lipoprotein cholesterol (HDL-C) was reduced in control group, but was unchanged in mice infused with anti-ABCA1 antibody. Total plasma cholesterol level was elevated while the capacity of plasma to support cholesterol efflux ex vivo was reduced after 16 weeks on high-fat diet; the effects were similar in the two groups. We conclude that functional blocking of ABCA1-dependent cholesterol efflux stimulates development of atherosclerosis in apoE K/O mice independently from HDL-C levels. 相似文献
19.
de Beer MC Ji A Jahangiri A Vaughan AM de Beer FC van der Westhuyzen DR Webb NR 《Journal of lipid research》2011,52(2):345-353
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA. 相似文献
20.
Cui HL Grant A Mukhamedova N Pushkarsky T Jennelle L Dubrovsky L Gaus K Fitzgerald ML Sviridov D Bukrinsky M 《Journal of lipid research》2012,53(4):696-708
HIV infection, through the actions of viral accessory protein Nef, impairs activity of cholesterol transporter ABCA1, inhibiting cholesterol efflux from macrophages and elevating the risk of atherosclerosis. Nef also induces lipid raft formation. In this study, we demonstrate that these activities are tightly linked and affect macrophage function and HIV replication. Nef stimulated lipid raft formation in macrophage cell line RAW 264.7, and lipid rafts were also mobilized in HIV-1-infected human monocyte-derived macrophages. Nef-mediated transfer of cholesterol to lipid rafts competed with the ABCA1-dependent pathway of cholesterol efflux, and pharmacological inhibition of ABCA1 functionality or suppression of ABCA1 expression by RNAi increased Nef-dependent delivery of cholesterol to lipid rafts. Nef reduced cell-surface accessibility of ABCA1 and induced ABCA1 catabolism via the lysosomal pathway. Despite increasing the abundance of lipid rafts, expression of Nef impaired phagocytic functions of macrophages. The infectivity of the virus produced in natural target cells of HIV-1 negatively correlated with the level of ABCA1. These findings demonstrate that Nef-dependent inhibition of ABCA1 is an essential component of the viral replication strategy and underscore the role of ABCA1 as an innate anti-HIV factor. 相似文献