首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The rice zebra mutant TCM248 is a single recessive mutant. This mutant develops transverse-striped leaves with green and white sectors under alternate light/dark growth conditions. Mutants that were grown under a higher light intensity during the light period showed a more intense striped phenotype. The white tissues contained abnormal chloroplasts with few internal membrane structures, while the green tissues in the mutants contained normal chloroplasts. The white tissue contained only trace amounts of Chls and carotenoids, and mRNA accumulation of nuclear genes encoding chloroplast proteins (rbcS, cab) was strongly suppressed compared to that in the wild type plants. A series of growth condition shift experiments demonstrated that the mutant displayed the striped phenotype only if it was exposed to the alternate light/dark growth conditions during a limited stage of early leaf development. These data suggest that the zebra gene is involved in the acquisition of photoprotective capacity of the plants and that this gene functions at an early stage of chloroplast differentiation.  相似文献   

3.
RNA编辑是一种转录后基因加工修饰现象,广泛存在于高等植物细胞器中。已有研究表明,RNA编辑与植物发生白化或者黄化有关。通过PCR、RT-PCR及测序的方法,对具有阶段性白化特性的小麦(Triticum aestivum)返白系FA85及其野生型矮变一号(Aibian 1)的叶绿体蛋白质编码基因RNA编辑位点进行了测定,在14个基因上发现了26个编辑位点。有5个编辑位点在2个株系之间存在编辑效率的差异,且这些差异的位点均位于编码叶绿体RNA聚合酶的基因上,其中3个位点编辑前后对应的蛋白质二级结构可能有差异。对2个株系叶绿体中PEP、NEP及PEP、NEP共同依赖基因转录水平的检测显示,除psbA和clpP外,其它基因在小麦返白系中的转录水平均有不同程度的下降。这种转录水平的显著下降及叶绿体RNA聚合酶基因上RNA编辑位点编辑效率的改变,可能与小麦返白系叶片的返白有关。  相似文献   

4.
Peng Y  Zhang Y  Lv J  Zhang J  Li P  Shi X  Wang Y  Zhang H  He Z  Teng S 《遗传学报》2012,39(8):385-396
Albino mutants are useful genetic resource for studying chlorophyll biosynthesis and chloroplast development and cloning genes involved in these processes in plants.Here we report a novel rice mutant low temperature albino 1(lta1) that showed albino leaves before 4-leaf stage when grown under temperature lower than 20℃,but developed normal green leaves under temperature higher than 24℃or similar morphological phenotypes in dark as did the wild-type(WT).Our analysis showed that the contents of chlorophylls and chlorophyll precursors were remarkably decreased in the ltal mutant under low temperature compared to WT.Transmission electron microscope observation revealed that chloroplasts were defectively developed in the albino lta1 leaves,which lacked of well-stacked granum and contained less stroma lamellae.These results suggested that the lta1 mutation may delay the light-induced thylakoid assembly under low temperature.Genetic analysis indicated that the albino phenotype was controlled by a single recessive locus.Through map-based approach,we finally located the Lta1 gene to a region of 40.3 kb on the short arm of chromosome 11.There are 8 predicted open reading frames(ORFs) in this region and two of them were deleted in lta1 genome compared with the WT genome.The further characterization of the Ltal gene would provide a good approach to uncover the novel molecular mechanisms involved in chloroplast development under low temperature stress.  相似文献   

5.
J S Keddie  B Carroll  J D Jones    W Gruissem 《The EMBO journal》1996,15(16):4208-4217
The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.  相似文献   

6.
The insertion of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane of the chloroplast is cpSRP-dependent, and requires the stromal components cpSRP54 and cpSRP43, the membrane-bound SRP receptor cpFtsY and the integral membrane protein Alb3. Previous studies demonstrated that the Arabidopsis mutant lacking both cpSRP54 and cpSRP43 had pale yellow leaves, but was viable, whereas the mutants lacking Alb3 exhibit an albino phenotype that is more severe and seedling lethality. We previously showed that a maize mutant lacking cpFtsY had a pale yellow-green phenotype and was seedling lethal. To compare the in vivo requirements of cpFtsY and Alb3 in thylakoid biogenesis in greater detail, we isolated Arabidopsis null mutants of cpftsY, and performed biochemical comparisons with the Arabidopsis alb3 mutant. Both cpftsY and alb3 null mutants were seedling lethal on a synthetic medium lacking sucrose, whereas on a medium supplemented with sucrose, they were able to grow to later developmental stages, but were mostly infertile. cpftsY mutant plants had yellow leaves in which the levels of LHCPs were reduced to 10-33% compared with wild type. In contrast, alb3 had yellowish white leaves, and the LHCP levels were less than or equal to 10% of those of wild type. Intriguingly, whereas accumulation of the Sec and Tat machineries were normal in both mutants, the Sec pathway substrate Cyt f was more severely decreased in the cpftsY mutant than in alb3, which may indicate a functional link between cpFtsY and Sec translocation machinery. These results suggest that cpFtsY and Alb3 have essentially similar, but slightly distinct, contributions to thylakoid biogenesis.  相似文献   

7.
在农业生产中光合作用是作物积累生物量的主要方式,其主要依赖于多种光合色素和完整的叶绿体结构与功能。而玉米叶色突变体对于研究叶绿体发育、提高玉米光合作用能力和产量具有重要意义。以两个玉米自交系郑58(Z58)和B73为对照,对从甲基磺酸乙酯(ethyl methanesulphonate,EMS)处理后的不同玉米诱变群体中筛选到的2株黄叶突变体yl-1(yellow leaf-1,Z58背景)、yl-2(yellow leaf-2,B73背景)以及从玉米自交系Z58中发现的1株自然黄叶突变体yl-3(yellow leaf-3)等3个表型相似的玉米黄叶突变体的形态特征、光合色素含量、叶绿素合成前体物质含量进行了比较研究。结果表明,与对照相比,3个突变体在整个生长周期内均呈现不同程度的黄叶表型、不复绿、植株矮小、发育迟缓;叶片总叶绿素、叶绿素a和叶绿素b含量均显著降低(P<0.05),叶绿素a/叶绿素b比值显著升高(P<0.05);不同突变体的各类叶绿素合成前体物质含量有不同程度的降低。3个突变体的黄叶表型可能是由不同基因的突变导致相关四吡咯化合物合成异常引起的。研究结果为定位...  相似文献   

8.
AtECB2 encodes a pentatricopeptide repeat (PPR) protein that regulates the editing of the plastid genes accD and ndhF. The ecb2-1 knockout shows an albino phenotype and is seedling lethal. In this study, we isolated an allelic mutant of the AtECB2 gene, ecb2-2, which showed delayed greening phenotype but could complete their life cycle. In this mutant, the Thr(500) is converted to Ile(500) in the 13(th) PPR motif of the AtECB2 protein. Transmission electron microscopy demonstrated that chloroplast development was delayed in both the cotyledons and leaves of the mutant. An investigation of the chloroplast gene expression profile indicated that PEP (plastid-encoded RNA polymerase) activity in ecb2-2 cotyledons was not obviously affected, whereas it was severely impaired in ecb2-1. This result suggests that the PEP activities cause the different phenotypes of the ecb2-1 and ecb2-2 mutants. The editing efficiency of the three editing sites of accD (C794 and C1568) and ndhF (C290) in the mutant was dynamically altered, which was in agreement with the phenotype. This result indicates that the editing efficiency of accD and ndhF in the ecb2-2 mutant is associated with a delayed greening phenotype. As ecb2-2 can survive and set seeds, this mutant can be used for further investigation of RNA editing and chloroplast development in arabidopsis.  相似文献   

9.
Responses of foliar and isolated intact chloroplast photosynthetic carbon metabolism observed in spinach (Spinacia oleracea cv Wisconsin Bloomsdale) plants exposed to a shortened photosynthetic period (7-hour light/17-hour dark cycle), were used as probes to examine in vivo metabolic factors that exerted rate determination on photosynthesis (PS) and on starch synthesis. Compared with control plants propagated continuously on a 12-hour light/12-hour dark cycle, 14 to 15 days were required, subsequent to a shift from 12 to 7 hours daylength, for 7-hour plants to begin to grow at rates comparable to those of 12-hour daylength plants. Because of shorter daily durations of PS, daily demand for photosynthate by growth processes appeared to be greater in the 7-hour than in the 12-hour plants. The result was that 7-hour plants established a 1.5- to 2.0-fold higher total PS rate than 12-hour plants.

Intact chloroplasts isolated from the leaves of 7-hour plants (7-h PLD) displayed 1.5- to 2.0-fold higher PS rates than plastids isolated from 12-hour plants (12-h PLD). Plastid lamellae prepared from 7- and 12-h PLD isolates displayed equivalent rates of ferredoxin-dependent ATP and NADPH photoformation indicating that electron transport processes were not factors in the establishment of higher 7-h PLD PS rates. Analyses, both in leaves as well as intact PLD isolates, of dark to light transitional increases in Calvin cycle intermediates, e.g., ribulose-1,5-bisphosphate (RuBP) and 3-phosphoglycerate (3-PGA), as well as estimations of activities of RuBP carboxylase and fructose-1,6-bisphosphate phosphatase, indicated that 7-hour plant leaves displayed higher PS rates (than 12-hour plants), because there was a higher magnitude of activity of the Calvin cycle.

Although both the foliar level of starch and sucrose, as well as starch synthesis rate, often was higher in 7-hour compared with 12-hour plant foliage, the higher 7-hour plant total PS rates indicated that maximal sucrose and starch levels did not mediate any `feedback' inhibition of PS. The higher 7-hour plant foliar and PLD PS rates resulted in higher glucose-1-P levels as well as a higher ratio of 3-PGA:Pi, both factors of which would enhance the activity of chloroplast ADP-glucose pyrophosphorylase, and which were attributed to be causal to the higher starch synthesis rates observed in 7-hour plant foliage and PLD isolates.

  相似文献   

10.
前期研究表明AtcpSecA基因的突变使叶绿体发育缺陷,内部缺少正常类囊体片层结构,叶片呈黄白色。在此基础上我们进一步研究AtcpSecA基因的表达特异性,并构建了AtcpSecA基因启动子与报告基因GUS的融合基因AtcpSecA::GUS,以农杆菌介导方法转化获得转基因拟南芥。GUS组织化学染色结果表明,在AtcpSecA::GUS转基因拟南芥的下胚轴、子叶、叶片、果柄等绿色组织中有很强的GUS活性,而在根、花序和种荚等非绿色组织中几乎没有GUS活性。降低培养基中琼脂浓度转基因拟南芥中AtcpSecA::GUS基因的表达明显受抑制,暗中则显著受到促进。  相似文献   

11.
Analysis of Leaf Sectors in the NCS6 Mitochondrial Mutant of Maize   总被引:9,自引:4,他引:5       下载免费PDF全文
Gu J  Miles D  Newton KJ 《The Plant cell》1993,5(8):963-971
The nonchromosomal stripe (NCS6) mutation of maize is a partial deletion of the mitochondrial cytochrome oxidase subunit 2 (Cox2) gene. The Cox2 deletion and a narrow yellow striping phenotype are inherited together in a maternal fashion. The striped plants are heteroplasmic for mutant and normal Cox2 genes. Only the mutant Cox2 gene is detected within the yellow stripes, whereas both normal and mutant forms of the gene are present in the green sectors of the NCS6 plants. In the green leaves of nonstriped relatives, only the normal Cox2 gene is found. Both the structure and functioning of the chloroplasts in the yellow leaf sectors of NCS6 plants are altered. The pleiotropic effects of the NCS6 mutation suggest that mitochondrial function is required for the development of photosynthetically competent chloroplasts.  相似文献   

12.
13.
Controlled cell death is vital for many physiological processes in plants, such as xylem development, the hypersensitive response (HR), and senescence; however, the pathways governing cell death are incompletely understood. Studies of mutants that display a cell-death phenotype have greatly contributed to our knowledge of how this process is regulated. The maize camouflage1 (cf1) mutant displays the novel phenotype of cell-specific death of bundle sheath (BS) cells in discrete yellow leaf tissues. To investigate the BS cell death in cf1 mutants, we characterized potential underlying factors. Hydrogen peroxide (H(2)O(2)) is known to be involved in many cell-death events in plants, including the HR. However, in vivo staining found no accumulation of H(2)O(2) in cf1 mutant leaves. Additionally, genetic analyses determined that functional chloroplasts are required for cf1 BS cell death. These results demonstrate that cf1 BS cell death occurs via a distinct pathway from that seen in a functionally related maize mutant or in the HR, suggesting that cell death in maize leaves can be caused by multiple mechanisms.  相似文献   

14.
Liu X  Yu F  Rodermel S 《Plant physiology》2010,154(4):1588-1601
The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant has green- and white-sectored leaves due to loss of VAR2, a subunit of the chloroplast FtsH protease/chaperone complex. Suppressor screens are a valuable tool to gain insight into VAR2 function and the mechanism of var2 variegation. Here, we report the molecular characterization of 004-003, a line in which var2 variegation is suppressed. We found that the suppression phenotype in this line is caused by lack of a chloroplast pentatricopeptide repeat (PPR) protein that we named SUPPRESSOR OF VARIEGATION7 (SVR7). PPR proteins contain tandemly repeated PPR motifs that bind specific RNAs, and they are thought to be central regulators of chloroplast and mitochondrial nucleic acid metabolism in plants. The svr7 mutant has defects in chloroplast ribosomal RNA (rRNA) processing that are different from those in other svr mutants, and these defects are correlated with reductions in the accumulation of some chloroplast proteins, directly or indirectly. We also found that whereas var2 displays a leaf variegation phenotype at 22°C, it has a pronounced chlorosis phenotype at 8°C that is correlated with defects in chloroplast rRNA processing and a drastic reduction in chloroplast protein accumulation. Surprisingly, the cold-induced phenotype of var2 cannot be suppressed by svr7. Our results strengthen the previously established linkage between var2 variegation and chloroplast rRNA processing/chloroplast translation, and they also point toward the possibility that VAR2 mediates different activities in chloroplast biogenesis at normal and chilling temperatures.  相似文献   

15.
16.
Nitric oxide improves internal iron availability in plants   总被引:18,自引:0,他引:18       下载免费PDF全文
Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 microM Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 microM Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant.  相似文献   

17.
Analysis of albino or pale-green (apg) mutants is important for identifying nuclear genes responsible for chloroplast development and pigment synthesis. We have identified 38 apg mutants by screening 11 000 Arabidopsis Ds-tagged lines. One mutant, apg6, contains a Ds insertion in a gene encoding APG6 (ClpB3), a homologue of the heat-shock protein Hsp101 (ClpB1). We isolated somatic revertants and identified two Ds-tagged and one T-DNA-tagged mutant alleles of apg6. All three alleles gave the same pale-green phenotype. These results suggest that APG6 is important for chloroplast development. The APG6 protein contains a transit peptide and is localized in chloroplasts. The plastids of apg6 pale-green cells were smaller than those of the wild type, and contained undeveloped thylakoid membranes. APG6 mRNA accumulated in response to heat shock in various organs, but not in response to other abiotic stresses. Under normal conditions, APG6 is constitutively expressed in the root tips, the organ boundary region, the reproductive tissues of mature plants where plastids exist as proplastids, and slightly in the stems and leaves. In addition, constitutive overexpression of APG6 in transgenic plants inhibited chloroplast development and resulted in a mild pale-green phenotype. The amounts of chloroplast proteins related to photosynthesis were markedly decreased in apg6 mutants. These results suggest that APG6 functions as a molecular chaperone involved in plastid differentiation mediating internal thylakoid membrane formation and conferring thermotolerance to chloroplasts during heat stress. The APG6 protein is not only involved in heat-stress response in chloroplasts, but is also essential for chloroplast development.  相似文献   

18.
19.
20.
The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号