首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Protein modification by the ubiquitin-like SUMO protein contributes to many cellular regulatory mechanisms. In Saccharomyces cerevisiae, both sumoylating and desumoylating activities are essential for viability. Of its two known desumoylating enzymes, Ubl-specific protease (Ulp)1 and Ulp2/Smt4, Ulp1 is specifically required for cell cycle progression. A approximately 200-residue segment, the Ulp domain (UD), is conserved among Ulps and includes a core cysteine protease domain that is even more widespread. Here we demonstrate that the Ulp1 UD by itself can support wild-type growth rates and in vitro can cleave SUMO from substrates. However, in cells expressing only the UD of Ulp1, many SUMO conjugates accumulate to high levels, indicating that the nonessential Ulp1 NH2-terminal domain is important for activity against a substantial fraction of sumoylated targets. The NH2-terminal domain also includes sequences necessary and sufficient to concentrate Ulp1 at nuclear envelope sites. Remarkably, NH2-terminally deleted Ulp1 variants are able, unlike full-length Ulp1, to suppress defects of cells lacking the divergent Ulp2 isopeptidase. Thus, the NH2-terminal regulatory domain of Ulp1 restricts Ulp1 activity toward certain sumoylated proteins while enabling the cleavage of others. These data define key functional elements of Ulp1 and strongly suggest that subcellular localization is a physiologically significant constraint on SUMO isopeptidase specificity.  相似文献   

4.
Protein TT0402 from Thermus thermophilus HB8 exhibits about 30-35% sequence identity with proteins belonging to subgroup IV in the aminotransferase family of the fold-type I pyridoxal 5'-phosphate (PLP)-dependent enzymes. In this study, we determined the crystal structure of TT0402 at 2.3 A resolution (R(factor) = 19.9%, R(free) = 23.6%). The overall structure of TT0402 exhibits the fold conserved in aminotransferases, and is most similar to that of the Escherichia coli phosphoserine aminotransferase, which belongs to subgroup IV but shares as little as 13% sequence identity with TT0402. Kinetic assays confirmed that TT0402 has higher transamination activities with the amino group donor, L-glutamate, and somewhat lower activities with L-aspartate. These results indicate that TT0402 is a subgroup IV aminotransferase for the synthesis/degradation of either L-aspartate or a similar compound.  相似文献   

5.
Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity‐based search with the suicide inhibitor haemagglutinin (HA)‐SUMO‐vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin‐specific protease‐like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l—an essential but distant zebrafish homologue of USPL1—also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low‐abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology.  相似文献   

6.
The SENP proteases regulate the SUMO conjugates in the cell by cleaving SUMO from target proteins. SENP6 and SENP7 are the most divergent members of the SENP/ULP protease family in humans by the presence of insertions in their catalytic domains. Loop1 insertion is determinant for the SUMO2/3 activity and specificity on SENP6 and SENP7. To gain structural insights into the role of Loop1, we have designed a chimeric SENP2 with the insertion of Loop1 into its sequence. The structure of SENP2‐Loop1 in complex with SUMO2 was solved at 2.15 Å resolution, and reveals the details of an interface exclusive to SENP6/7 and the formation of unique contacts between both proteins. Interestingly, functional data with SUMO substrates showed an increase of the proteolytic activity in the SENP2‐Loop1 chimera for diSUMO2 and polySUMO2 substrates.  相似文献   

7.
8.
The discovery of ubiquitin‐like small archaeal modifier protein 2 (SAMP2) that forms covalent polymeric chains in Haloferax volcanii has generated tremendous interest in the function and regulation of this protein. At present, it remains unclear whether the Hfx. volcanii modifier protein SAMP1 has such polyubiquitinating‐like activity. Although SAMP1 and SAMP2 use the same conjugation machinery to modify their target proteins, each can impart distinct functional consequences. To better understand the mechanism of SAMP2 conjugation, we have sought to characterize the biophysical and structural properties of the protein from Hfx. volcanii. SAMP2 is only partially structured under mesohalic solution conditions and adopts a well‐folded compact conformation in the presence of 2.5M of NaCl. Its 2.3‐Å‐resolution crystal structure reveals a characteristic α/β central core domain and a unique β‐hinge motif. This motif anchors an unusual C‐terminal extension comprising the diglycine tail as well as two lysine residues that can potentially serve to interlink SAMP2 moieties. Mutational alternation of the structural malleability of this β‐hinge motif essentially abolishes the conjugation activity of SAMP2 in vivo. In addition, NMR structural studies of the putative ubiquitin‐like protein HVO_2177 from Hfx. volcanii show that like SAMP1, HVO_2177 forms a classic β‐grasp fold in a salt‐independent manner. These results provide insights into the structure–function relationship of sampylating proteins of fundamental importance in post‐translational protein modification and environmental cues in Archaea.  相似文献   

9.
SPP1 is a siphophage infecting the gram‐positive bacterium Bacillus subtilis. The SPP1 tail electron microscopy (EM) reconstruction revealed that it is mainly constituted by conserved structural proteins such as the major tail proteins (gp17.1), the tape measure protein (gp18), the Distal tail protein (Dit, gp19.1), and the Tail associated lysin (gp21). A group of five small genes (22–24.1) follows in the genome but it remains to be elucidated whether their protein products belong or not to the tail. Noteworthy, an unassigned EM density accounting for ~245 kDa is present at the distal end of the SPP1 tail‐tip. We report here the gp23.1 crystal structure at 1.6 Å resolution, a protein that lacks sequence identity to any known protein. We found that gp23.1 forms a hexamer both in the crystal lattice and in solution as revealed by light scattering measurements. The gp23.1 hexamer does not fit well in the unassigned SPP1 tail‐tip EM density and we hypothesize that this protein might act as a chaperone.  相似文献   

10.
WBSCR16 (Williams‐Beuren Syndrome Chromosomal Region 16) gene is located in a large deletion region of Williams‐Beuren syndrome (WBS), which is a neurodevelopmental disorder. Although the relationship between WBSCR16 and WBS remains unclear, it has been reported that WBSCR16 is a member of a functional module that regulates mitochondrial 16S rRNA abundance and intra‐mitochondrial translation. WBSCR16 has RCC1 (Regulator of Chromosome Condensation 1)‐like amino acid sequence repeats but the function of WBSCR16 appears to be different from that of other RCC1 superfamily members. Here, we demonstrate that WBSCR16 localizes to mitochondria in HeLa cells, and report the crystal structure of WBSCR16 determined to 2.0 Å resolution using multi‐wavelength anomalous diffraction. WBSCR16 adopts the seven‐bladed β‐propeller fold characteristic of RCC1‐like proteins. A comparison of the WBSCR16 structure with that of RCC1 and other RCC1‐like proteins reveals that, although many of the residues buried in the core of the β‐propeller are highly conserved, the surface residues are poorly conserved and conformationally divergent.  相似文献   

11.
12.
The crystal structure of a yeast hypothetical protein with sequence similarity to CN hydrolases has been determined to 2.4 A resolution by the multiwavelength anomalous dispersion (MAD) method. The protein folds as a four-layer alphabetabetaalpha sandwich and exists as a dimer in the crystal and in solution. It was selected in a structural genomics project as representative of CN hydrolases at a time when no structures had been determined for members of this family. Structures for two other members of the family have since been reported and the three proteins have similar topology and dimerization modes, which are distinct from those of other alphabetabetaalpha proteins whose structures are known. The dimers form an unusual eight-layer alphabetabetaalpha:alphabetabetaalpha structure. Although the precise enzymatic reactions catalyzed by the yeast protein are not known, considerable information about the active site may be deduced from conserved sequence motifs, comparative biochemical information, and comparison with known structures of hydrolase active sites. As with serine hydrolases, the active-site nucleophile (cysteine in this case) is positioned on a nucleophile elbow.  相似文献   

13.
Eukaryotic ubiquitin and ubiquitin‐like systems play crucial roles in various cellular biological processes. In this work, we determined the solution structure of SAMP1 from Haloferax volcanii by NMR spectroscopy. Under low ionic conditions, SAMP1 presented two distinct conformations, one folded β‐grasp and the other disordered. Interestingly, SAMP1 underwent a conformational conversion from disorder to order with ion concentration increasing, indicating that the ordered conformation is the functional form of SAMP1 under the physiological condition of H. volcanii. Furthermore, SAMP1 could interact with proteasome‐activating nucleotidase B, supposing a potential role of SAMP1 in the protein degradation pathway mediated by proteasome.  相似文献   

14.
The post‐translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin‐like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO‐modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome‐targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome‐targeting is crucially required for the repair of TRF2‐depleted dysfunctional telomeres by 53BP1‐mediated non‐homologous end joining.  相似文献   

15.
16.
We have used NMR spectroscopy to determine the solution structure of protein AAH26994.1 from Mus musculus and propose that it represents the first three-dimensional structure of a ubiquitin-related modifier 1 (Urm1) protein. Amino acid sequence comparisons indicate that AAH26994.1 belongs to the Urm1 family of ubiquitin-like modifier proteins. The best characterized member of this family has been shown to be involved in nutrient sensing, invasive growth, and budding in yeast. Proteins in this family have only a weak sequence similarity to ubiquitin, and the structure of AAH26994.1 showed a much closer resemblance to MoaD subunits of molybdopterin synthases (known structures are of three bacterial MoaD proteins with 14%-26% sequence identity to AAH26994.1). The structures of AAH26994.1 and the MoaD proteins each contain the signature ubiquitin secondary structure fold, but all differ from ubiquitin largely in regions outside of this fold. This structural similarity bolsters the hypothesis that ubiquitin and ubiquitin-related proteins evolved from a protein-based sulfide donor system of the molybdopterin synthase type.  相似文献   

17.
18.
Ubiquitin and ubiquitin-like proteins are known to be covalently conjugated to a variety of cellular substrates via a three-step enzymatic pathway. These modifications lead to the degradation of substrates or change its functional status. The ubiquitin-activating enzyme (E1) plays a key role in the first step of ubiquitination pathway to activate ubiquitin or ubiquitin-like proteins. Ubiquitin-activating enzyme E1-domain containing 1 (UBE1DC1) had been proved to activate an ubiquitin-like protein, ubiquitin-fold modifier 1 (Ufm1), by forming a high-energy thioester bond. In this report, UBE1DC1 is proved to activate another ubiquitin-like protein, SUMO2, besides Ufm1, both in vitro and in vivo by immunological analysis. It indicated that UBE1DC1 could activate two different ubiquitin-like proteins, SUMO2 and Ufm1, which have no significant similarity with each other. Subcellular localization in AD293 cells revealed that UBE1DC1 was especially distributed in the cytoplasm; whereas UBE1DC1 was mainly distributed in the nucleus when was cotransfected with SUMO2. It presumed that UBE1DC1 greatly activated SUMO2 in the nucleus or transferred activated-SUMO2 to nucleus after it conjugated SUMO2 in the cytoplasm.  相似文献   

19.
20.
The testis/brain-RNA-binding protein (TB-RBP) spatially and temporally controls the expression of specific mRNAs in developing male germ cells and brain cells, and is implicated in DNA recombination and repair events. We report the 2.65 A crystal structure of mouse TB-RBP. The structure is predominantly alpha-helical and exhibits a novel protein fold and mode of assembly. Crystal symmetry and molecular symmetry combine to form an octet of TB-RBP monomers in the shape of an elongated spherical particle with a large cavity at its center. Amino acid residues that affect RNA and DNA binding are located on the interior surface of the assembled particle, and a putative nucleotide-binding domain that controls RNA binding is located at a dimer interface. Other modes of assembly are suggested for TB-RBP based on our structure and recently reported electron microscopic reconstructions of human TB-RBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号