首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We tested the ability of cellular oncogene (c-onc) probes to identify F1 hybrids and the lineage of known backcrosses within the fish genus Morone. Total DNA was isolated from five to 14 individuals per North American Morone species (striped bass, white bass, white perch, and yellow bass). The DNA was digested with two restriction enzymes, Eco RI and Hin dIII, Southern blotted, and hybridized to six different c-onc probes including v-abl, v-erb B, c-myc, c-H-ras, c-K-ras, and v-src. We found fixed genotypic differences among the four species for all six probes in single restriction enzyme digests. The heritability of these nuclear DNA genotypes was evaluated in hatchery-produced F1 Morone hybrids (striped bass x white bass and striped bass x white perch) tested with the six informative single probe/restriction enzyme combinations. All F1 individuals exhibited heterozygosity in all diagnostic nuclear DNA fragments, confirming the Mendelian inheritance of these genotypes in these fish. Furthermore, analysis of these nuclear DNA genotypes in hatchery-produced backcrosses of F1 hybrids striped bass x (white bass x striped bass) detected both recombinant and parental genotypes at all six polymorphic c-onc sequences. The lineage of suspected Morone hybrids of unknown descent collected from Lewis Smith Lake, Alabama, and from the Occoquan River, Virginia, was determined using the c-onc probes. Our results suggest that c-onc probes are suitable markers to unequivocally identify F1 hybrids and backcrosses and to quantify introgression in natural populations of fishes. The addition of RFLP analysis of mtDNA provided a complete ancestral history of individual fish.  相似文献   

2.
3.
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a neuropathological condition affecting > 40 species of fish. Although VER affects mainly marine fish, the disease has also been detected in certain species reared in freshwater environments. There are relatively few reports concerning the disease in freshwater species, and there is not much information on clinical signs. Nevertheless, the most common clinical findings reported from affected freshwater species are consistent with the typical signs observed in marine species. In this paper we describe the main clinical signs and the laboratory results associated with the detection of a betanodavirus in hybrid striped bass x white bass (Morone saxatilis x Morone chrysops) and largemouth bass Micropterus salmoides, reared in a freshwater environment. We also detected the virus by real-time PCR and isolated it in cell culture from a batch of pike-perch Sander lucioperca farmed in the same system.  相似文献   

4.
The striped bass Morone saxatilis population in the Savannah River (south-eastern U.S.A.) collapsed in the 1980s, and recent eorts to restore the population have resulted in increased catch-per-unit-eort (CPUE) of striped bass in the Savannah River Estuary (SRE). The abundance of eggs and larvae, however, remain well below historic levels. The primary cause of the population decline was remedied, and environmental conditions seem suitable for striped bass spawning. Regression analysis of data derived from ultrasonic imaging of 31 striped bass resulted in a statistical model that predicted ovary volume well (r2=0.95). The enumeration of oocytes from ovarian tissue samples and the prediction of ovary volume allowed fecundity to be estimated without sacrificing the fish. Oocyte maturation in Savannah River striped bass seemed to progress normally, with oocytes developing to final stages of maturity in larger fish (>750 mm L T). Additionally, fecundity estimates were comparable to a neighbouring striped bass population. The environmental cues needed to trigger development and release of striped bass oocytes into the SRE appeared to be present. If most of the striped bass females in the SRE are still young (<7 years), the ability to produce large numbers of eggs will be limited. As these young fish mature, egg production probably will increase and the density of striped bass eggs eventually will approach historic levels, provided suitable habitat and water quality are maintained.  相似文献   

5.
6.
A nucleotide sequence analysis of a fragment of a Morone MHC class Ia gene detected high levels of polymorphism in striped bass Morone saxatilis, white perch Morone americana and yellow bass Morone mississippiensis. Extremely low levels of MHC diversity, however, were detected in white bass Morone chrysops, suggesting the possibility of a severe population bottleneck for this species.  相似文献   

7.
To support detailed genetic analysis of striped bass (Morone saxatilis) and white bass (Morone chrysops), we isolated 153 microsatellite loci from repeat‐enriched striped bass DNA libraries. Of these, 147 markers amplified in striped bass (average 4.7 alleles per locus) and 133 in white bass (average 2.2 alleles per locus). One hundred twenty‐two markers amplified in their hybrid. Development of new microsatellite markers will facilitate evaluations of genetic structure in wild populations and will support pedigree analysis and linkage mapping for selective breeding.  相似文献   

8.
A survey to determine presence of parasitic and disease organisms and their effect on estuarine populations of striped bass, Morone saxatilis (Walbaum), was conducted monthly from May 1972 to May 1973. A total of 514 fish over 1 year old and 140 young-of-the-year were examined using standard necropsy and histological procedures. Other species of fishes were studied to determine the specificity of striped bass parasites and to determine if other fishes were reservoirs for striped bass pathogens. Forty-five species of parasitic organisms from viruses to Metazoa were recognized from striped bass. Heavy infections by some were associated with definite pathological conditions.  相似文献   

9.
White bass (Morone chrysops), striped bass and their interspecific hybrid are important game fishes, whereas the hybrid striped bass is an important aquaculture species in the US. Numerous state, federal and private hatcheries, therefore, rear these species for stocking purposes as well as for food fish. Although striped bass populations (both wild and domesticated) have been extensively evaluated, relatively little effort has been directed toward the study and improvement of white bass. In this study, we developed SNP resources to examine the genetic relationships among a long‐term domesticated white bass line and five potential founder stocks for selective breeding collected from drainages in Arkansas, Texas and Alabama. Using genotyping‐by‐sequencing, we generated 13 872 genome‐wide SNP loci across the six populations. Stringent filtering of SNP‐calling parameters identified 426 informative SNP loci. Population genetic and structure analyses using these loci revealed only moderate genetic differentiation between populations (global Fst = 0.083) and indicated two major genetic clusters. A final 57‐SNP assay was successfully designed and validated using the MassARRAY system. The developed SNP panel assigned 96 additional genotyped individuals to their population of origin with 100% accuracy. The SNP resources developed in this study should facilitate ongoing efforts in selective breeding and conservation of white bass.  相似文献   

10.
Development of nine polymorphic microsatellites from a genomic library of hybrid striped bass (female Morone chrysops × male Morone saxatilus) DNA is described. Breeding of hybrid striped bass for aquaculture is based largely on breeding wild fish. Molecular markers such as microsatellites will be useful tools for developing broodstock, estimating heritability for production traits, and selective breeding via marker‐assisted selection. The nine polymorphic microsatellites include six dinucleotide and three complex repeat motifs. The number of alleles detected among a sample of 10 individuals of each species was relatively low. All polymerase chain reaction primer pairs also amplified products in the sea bass Dicentrarchus labrax.  相似文献   

11.
12.
Puberty is the period during which full sexual development occurs and the capacity to reproduce is acquired. Despite its importance, our understanding of the endocrine regulation of puberty in lower vertebrates is still limited. The objective of the present study was to describe the changes in gonadal development and plasma steroid levels in a relatively late maturing species, the striped bass, during the first four years of life. In about 65% of the females, puberty was initiated during the third year. Although gonadosomatic index (GSI) and oocyte diameter increased during this year, this first cycle was characterized by a heterogeneous population of developing oocytes, a relatively low mean maximum oocyte diameter, and an absence of yolk granules in the oocytes. Plasma 17beta-estradiol (E(2)) levels were low in all three-year-old fish, suggesting that an insufficient stimulation of vitellogenin production by E(2) may underlie the lack of vitellogenin incorporation into developing oocytes. All monitored parameters increased during the fourth year, but were still below the values attained by older females. In about 60% of the males, puberty was initiated during the first year and all males were mature by the third year. During the first two years, several immature males initiated spermatogenesis without reaching full maturity. In mature males, mean GSI, plasma testosterone, and 11-ketotestosterone levels increased simultaneously, reaching higher values each subsequent year. Our results indicate that, similar to the situation in mammals, more than one reproductive cycle is required in striped bass before complete adulthood is reached.  相似文献   

13.
The ontogeny of gonadotropin-releasing hormone (GnRH) mRNA-producing neurons was studied in developing hybrid striped bass (white bass Morone chrysops female × striped bass Morone saxatilis male), 1–55 days post-fertilization (dpf), by whole-mount in situ hybridization. Neurons that produce salmon (s) GnRH were first detected at 32 h post-fertilization in the olfactory placodes. These neurons migrated posteriorly during development and reached their final position at the olfactory bulbs-telencephalon boundary, possibly the terminal nerve ganglion (TNg) by 11 dpf. First signal of chicken (c) GnRH-II neurons appeared in the midbrain 2 dpf and remained there throughout development. A signal of seabream (sb) GnRH mRNA was first detected at 21 dpf in the preoptic area (POA) and as a bilateral continuum along the ventral telencephalon at 32–55 dpf. The expression of all three forms of GnRH increased throughout development. These results suggest that cGnRH-II neurons originate in the mid-brain, and that sGnRH neurons originate in the olfactory placodes and migrate caudally to the TNg. Neurons that express sbGnRH seem to originate at the preoptic area and then to migrate anteriorly along the ventral telencephalon. An olfactory placodal origin of these neurons, however, cannot be ruled out.  相似文献   

14.
Histone-like proteins (HLPs) are broad-spectrum, endogenously produced antibiotics which we have isolated from tissues of rainbow trout Oncorhynchus mykiss and hybrid striped bass (Morone saxatilis male x M. chrysops female). Here, we show that HLP-1, which has high sequence homology to histone H2B, equally inhibited both young and mature trophonts of the important ectoparasite Amyloodinium ocellatum. In addition to direct killing of Amyloodinium trophonts, there was evidence that HLP-1 from both rainbow trout and hybrid striped bass caused severe developmental abnormalities, including delayed development, in both the parasitic trophont stage as well as the reproductive tomont stage. The deleterious effects of HLP-1 also were manifested in what appeared to be 'delayed mortality', where parasites of normal appearance would die later in development. Similar serious damage was also seen with calf histone H2B and the unrelated peptide antibiotic magainin 2. A comparison of the antibiotic activity in mucus versus epidermis compartments of the skin of hybrid striped bass suggested that the majority of antibiotic (including HLP-1) activity resided in the epidermis, although some activity was present in the mucus. These data suggest that normal, nonimmune fish skin contains potent defenses against protozoan ectoparasites and that the effects of these defenses may extend beyond their transient interactions with the parasites, which has important implications for this host-parasite relationship.  相似文献   

15.
16.
Examination of the intestinal contents of 130 striped bass (Morone saxatilis) collected from the Hudson River and Long Island Sound during May to October 1981 showed that opportunistic fish pathogens--especially Aeromonas hydrophila--predominated in samples from both locations. Other isolates from both groups of striped bass included Vibrio, pseudomonads, flavo-bacteria, Alcaligenes, and enterics. Small numbers of Micrococcus, Bacillus, Corynebacterium, and Acinetobacter were also isolated. Total numbers of bacteria in the intestines were 100 to 1,000 times higher in striped bass from the Hudson River than in those from Long Island Sound.  相似文献   

17.
Mechanisms of copper toxicity and consequences of exposure vary due to uptake route and ionoregulatory status. The goal of this research was to develop a model fish system to assess the influence of different Cu exposure routes (waterborne or dietary) on bioavailability, uptake, and effects in hybrid striped bass (Morone chrysops x Morone saxatilis) acclimated to fresh- or saltwater. Initially, hybrid striped bass were exposed to dietary Cu concentrations of 571, 785, and 1013 mug Cu/g, along with a control (approximately 5 microg Cu/g), for 14 days in saltwater. Intestinal and liver Cu accumulated in a dose-dependent manner in fish exposed to increasing levels of dietary Cu. Chronic (42 days) experiments were then conducted to determine sub-lethal effects of aqueous, dietary, and combined aqueous and dietary Cu exposures to both freshwater- and saltwater-acclimated hybrid striped bass. Growth and Cu accumulation in the gill, intestine, and liver were measured. Although no significant effects were observed in fish exposed to waterborne Cu, those exposed through the diet accumulated significant liver and intestinal Cu but showed no significant change in growth. Overall, these results suggest that at the levels tested, exposure to elevated waterborne Cu did not cause significant long-term tissue Cu accumulation, whereas dietary Cu exposure caused significant liver and intestinal Cu accumulation in hybrid striped bass which was comparable in both freshwater and saltwater (15 g/L).  相似文献   

18.
A decline in bluefish (Pomatomus saltatrix L.) recreational landings during the 1990s and the early 2000s led to multiple theories on the ultimate cause. One theory was that a large portion of the bluefish population moved offshore and was unavailable to nearshore recreational fishers; one reason given for the movement offshore was increased competition with striped bass (Morone saxatilis W.). We conducted laboratory experiments (feeding and non-feeding) to examine behavioral interactions between adult bluefish and sub-adult striped bass in a large (121,000 L) research aquarium. Additionally, we examined diet and habitat overlap of bluefish and striped bass from the fall and spring bottom trawl surveys conducted by the National Marine Fisheries Service. Observations of feeding trials for the following treatments were made: non-impaired (i.e., same number and size of bluefish and striped bass), size-impaired (i.e., large striped bass/small bluefish), number-impaired (i.e.,10 striped bass/3bluefish), and single-species controls. Within a species, there was no difference in a variety of behavioral measures (e.g., attack rate, capture success, ingestion rate, and activity) between mixed- and control treatments under non-impaired or size-impaired conditions. However, behavior of number-impaired bluefish differed from control and size-impaired fish suggesting that striped bass may have a negative influence on bluefish foraging when bluefish are “out-numbered”. Feeding had a strong effect on swimming speeds for both species. Diet and habitat overlap between bluefish and striped bass in continental shelf waters was low. Overall, foraging behavior in mixed-species treatments and field observations suggest no competitive interactions between adult bluefish and sub-adult striped bass.  相似文献   

19.
The entire mitochondrial genome of the striped bass Morone saxatilis was sequenced together with the mitochondrial (mt) control regions of the white bass Morone chrysops, white perch Morone americana, yellow bass Morone mississippiensis, spotted seabass Dicentrarchus punctatus, European seabass Dicentrarchus labrax and the Japanese seabass Lateolabrax japonicus. The resultant 17 580 base pair circular genome of M. saxatilis contains 38 genes (13 proteins, 23 transfer RNAs and two ribosomal RNAs) and a control region bordered by the proline and phenylalanine mitochondrial tRNAs. Gene arrangement was similar to other vertebrates, except that the mt-nd6 gene was found within the control region rather than the canonical position between the mt-nd5 and mt-cyb genes. This translocation was found in all the Morone and Dicentrarchus species studied without functional copies or pseudogenes in the ancestral position. In L. japonicus, the mt-nd6 gene was found in the canonical position without evidence of an mt-nd6 gene in the control region. A Bayesian analysis of these and published mt-nd6 sequences from 45 other Perciformes grouped the Morone and Dicentrarchus species monophyletically with a probability of 1·00 with respect to L. japonicus and all other perciforms, and placed the Dicentrarchus species in the basal position. These data reinforce current placement of L. japonicus outside the Moronidae and provide a clear evolutionary character to define this family. The phylogeny of the Moronidae presented here also supports the hypothesis of an anadromous common ancestor to this family that gave rise to the North American estuarine and freshwater species. A series of tandem repeats previously reported in M. saxatilis was found in the control region of all Morone species between the mt-nd6 and mt-rnr1 genes, but not in either Dicentrarchus species, which reinforces the continued use of these two separate genera.  相似文献   

20.
We sought to develop nuclear DNA (nDNA) probes which could be used to complement mtDNA and DNA fingerprinting markers in distinguishing striped bass, Morone saxatilis (Walbaum), from discrete spawning systems. Restriction endonuclease-generated single copy, 10–20-kb striped bass nuclear nDNA fragments were cloned into the bacteriophage vector Lambda Dash II and tested in Southern blot analyses for their abilities to reveal population-specific polymorphisms. Three of the I7 nDNA sequences tested exhibited polymorphisms which potentially could be used to delineate striped bass populations. One probe, DSB 22, revealed significant genotypic frequency differences between Gulf of Mexico and Atlantic striped bass and among striped bass representative of some Atlantic systems. These preliminary results suggest that single copy nDNA sequences may provide sufficient polymorphisms to aid in stock identification of species which proved genetically monomorphic using other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号