首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
BACKGROUND AND PURPOSE: Phytoestrogens exert estrogenic effects on the central nervous system, induce estrus, and stimulate growth of the genital tract of female animals. Over 300 plants and plant products, including some used in laboratory animal diets, contain phytoestrogens. Therefore, the source and concentration of phytoestrogens in rodent diets were determined. METHODS: Twelve rodent diets and six major dietary ingredients were assayed for phytoestrogens (daidzein, genistein, formononetin, biochanin A, and coumestrol), using high-performance liquid chromatography. Three rodent diets recently formulated to reduce phytoestrogen content also were assayed. RESULTS: Formononetin, biochanin A, and coumestrol were not detected. Soybean meal was the major source of daidzein and genistein; their concentrations were directly correlated to the percentage of soybean meal in each diet. CONCLUSIONS: High, variable concentrations of daidzein and genistein are present in some rodent diets, and dietary phytoestrogens have the potential to alter results of studies of estrogenicity. Careful attention should be given to diet phytoestrogen content, and their concentration should be reported. A standardized, open-formula diet in which estrogenic substances have been reduced to levels that do not alter results of studies that are influenced by exogenous estrogens is recommended.  相似文献   

4.
湖南八大公山自然保护区是华中地区面积大且植物保存较完好的地点。土著种子植物计162科、709属、1775种。全部属按15个地理分布型进行分析,全部种按更细的分布型类别(中国特有分为10个亚型)进行分析。结果表明,本地热带分布的科属虽为数不少,但温带分布的科属更显优势,北温带科属比较集中,同时中国、东亚、及东亚一北美特有属也很集中。本山中国特有种计1120种,华中特有种为347种。植物区系的古老、残遗及特有性突出,可视为中国(华中)有典型代表性的山地。  相似文献   

5.
The phytoestrogens daidzein, genistein, equol and coumestrol were found to stimulate microsomal prostaglandin H synthase (PHS) in vitro in a concentration-dependent manner when PHS-activity was measured by arachidonic acid-dependent oxygen uptake. These compounds were co-oxidized by PHS and the conversion of parent compounds was measured by HPLC analysis. The stimulation of PHS-cyclooxygenase by these compounds was partially reversed at high concentrations probably due to their antioxidant properties causing inhibition. In contrast, the monomethyl ethers of daidzein and genistein, formononetin and biochanin A, had little or weakly inhibitory effect on PHS, and appear to be no or poor co-substrates for PHS. Compared to the equine estrogen equilin, its metabolite d-equilenin was poorly metabolized by PHS and inhibited rather than stimulated PHS-cyclooxygenase activity in vitro. The resorcylic acid lactones zearalenone and zeranol, on the other hand, were surprisingly good inhibitors of PHS-cyclooxygenase. Furthermore, zeranol inhibited both the arachidonic acid and the hydrogen-peroxide-dependent oxidation of DES in contrast to indomethacin which inhibited only cyclooxygenase-dependent co-oxidation of DES. The results of this in vitro study are discussed in the context of data on synthetic and steroidal estrogens and support the idea that PHS-activity may be modulated by interaction with certain estrogenic compounds.  相似文献   

6.
In this study, we investigated the estrogenic activity of environmental estrogens by a competition binding assay using a human recombinant estrogens receptor (hERbeta) and by a proliferation assay using MCF-7 cells and a sulforhodamine-B assay. In the binding assay, pharmaceuticals had a stronger binding activity to hERbeta than that of some phytoestrogens (coumestrol, daidzein, genistein, luteolin, chrysin, flavone, and naringenin) or industrial chemicals, but phytoestrogens such as coumestrol had a binding activity as strong as pharmaceuticals such as 17alpha-ethynylestradiol (EE), tamoxifen (Tam), and mestranol. In the proliferation assay, pharmaceuticals such as diethylstilbestrol, EE, Tam, and clomiphene, and industrial chemicals such as 4-nonylphenol, bisphenol A, and 4-dihydroxybiphenyl had a proliferation-stimulating activity as strong as 17beta-estradiol (ES). In addition, we found that phytoestrogens such as coumestrol, daidzein, luteolin, and quercetin exerted a proliferation stimulating activity as strong as ES. Furthermore, we examined the suppression of proliferation-stimulating activity, induced by environmental estrogen, by flavonoids, such as daidzein, genistein, quercetin, and luteolin, and found that these flavonoids suppressed the induction of the proliferation-stimulating activity of environmental estrogens. The suppressive effect of flavonoids suggests that these compounds have anti-estrogenic and anti-cancer activities.  相似文献   

7.
Endocrine-disrupting chemicals (EDCs) are giving rise to serious concerns for humans and wildlife. Phytoestrogens, such as daidzein and genistein in plants, and organochlorine pesticides are suspected EDCs, because their chemical structure is similar to that of natural or synthetic estrogens and they have estrogenic activity in vitro and in vivo. We assessed estrogenic activity and dietary phytoestrogen and organochlorine pesticide contents of various fish diets made in the United Kingdom, and compared them with those features of diets made in Japan that were tested in a previous study. Genistein and daidzein were detected in all of the diets. Using an in vitro bioassay, many of these diets had higher activation of estrogen beta-receptors than estrogen alpha-receptors. Organochlorine pesticides such as hexachlorobenzene, beta-benzene hexachloride (BHC), and gamma-BHC were detected in all fish diets. On the basis of these data, we investigated the effect of differing dietary phytoestrogen content in Japanese fish diets on hepatic vitellogenin production and reproduction (fecundity and fertility) in medaka (Oryzias latipes). Assessment of the effects of a 28-day feeding period on reproduction of paired medaka did not indicate significant differences in the number of eggs produced and fertility among all feeding groups. However, hepatic vitellogenin values were significantly higher for male medaka fed diet C (genistein, 58.5 +/- 0.6 microg/g; daidzein, 37.3 +/- 0.2 microg/g) for 28 days compared with those fed diet A (genistein, < 0.8 microg/g; daidzein, < 0.8 microg/g) or diet B (genistein, 1.4 +/- 0.1 microg/g; daidzein, 2.0 +/- 0.1 microg/g). Our findings indicate that fish diets containing high amounts of phytoestrogens, such as diet C, have the potential to induce hepatic vitellogenin production in male medaka, even if reproductive parameters are unaffected. Therefore, some diets, by affecting vitellogenin production in males, may alter estrogenic activity of in vivo tests designed to determine activity of test compounds added to the diet.  相似文献   

8.
Red clover, known for its estrogenic activity due to its isoflavones content (biochanin A, genistein, daidzein and formononetin), was inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Once the symbiotic fungus was well established, plants were harvested and we determined the root and shoot dry weight as well as the P-content. In roots and leaves the levels of biochanin A, genistein, daidzein and formononetin were quantified by reversed-phase HPLC and the estrogenic activity of the leaves was measured by a transactivation assay using a yeast two-plasmid system. Mycorrhization increased the levels of biochanin A in the root and the shoot and reduced the levels of genistein in the shoot of red clover. The levels of the other isoflavones were not affected. The shoot biomass of mycorrhizal plants more than doubled compared with non-mycorrhizal control plants, and this growth-stimulating effect of arbuscular mycorrhiza did not affect the estrogenic activity of red clover. In a control P treatment, the biomass of red clover was greatly enhanced. However, the estrogenic activity was reduced. These results suggest that, in contrast to an enhanced shoot biomass production after P application with a reduced estrogenic activity, with arbuscular mycorrhiza the shoot biomass of red clover can be enhanced without a negative effect on estrogenic activity.  相似文献   

9.
Fishes have been used as laboratory animal for research of estrogenic endocrine disrupters by many researchers. However, much less attention was paid to the possibility that compounds with estrogenic activity are present in fish diets. In order to examine this possibility, we measured the estrogenic activity in commercial fish feed by in vitro yeast estrogen-screen (YES) assay based on the binding ability of tested compounds to estrogen receptors. Estrogenic activity was detected in all the commercial fish feed examined (0.2-6.2 ng estradiol equivalent/g fish feed), some phytoestrogens (genistein, formononetin, equol and coumestrol; relative activity to estradiol, 8.6 x 10(-6)-1.1 x 10(-4) by giving a value of 1.0 to estradiol) and some androgens (testosterone, 11-ketotestosterone and 5 alpha-dihydrotestosterone; relative activity to estradiol, 3.0 x 10(-6)-1.2 x 10(-4)). Therefore, it is possible that these compounds could affect the results of in vivo estrogen assay, such as vitellogenin production in male fish, especially when fish are fed commercial feed.  相似文献   

10.
11.
The isoflavones genistein and daidzein and the daidzein metabolite equol have been reported to interact with estrogen receptors (ERs). Some studies indicate that they behave clinically like estrogen in some estrogen-deficiency diseases. However, the detailed molecular mechanism used by these compounds to create beneficial effects in patients with estrogen-related diseases has not been clarified. Using histone acetyltransferase (HAT) assay, we found that equol, genistein, and AglyMax had significant effects on ERalpha-mediated histone acetylation. Although 17beta-estradiol (E2)-dependent HAT activity of steroid receptor coactivators 2 (SRC2) and p300 mediated by ERbeta could be detected, it was weaker than that mediated by ERalpha. Equol, genistein, AglyMax, and daidzein all markedly stimulated ERbeta-mediated histone acetylation. On the other hand, anti-estrogenic compounds ICI 182,780 (ICI) and tamoxifen (TA) did not have an effect on HAT activity mediated by either ERalpha or ERbeta. Our data indicate that estrogenic ligands exert their effects by elevating histone acetylation and coactivator activity of ER, and suggest that the risk of estrogen-related diseases might be reduced by a sufficient amount of genistein or AglyMax supplements.  相似文献   

12.
13.
通过适当的样品处理方法,游离的和结合的植物雌激素[大豆素,雌马酚,染料木素,芒柄花素,香豆雌酚和美皂异黄酮]被从新鲜植物材料的提取物中分离出来,并在不同的紫外光波长下,可被HPLC法定量测定,根据滞留时间和标准品的添加,而鉴别出植物雌激素的层析波峰。本方法的测定灵敏度为2ppm。白三叶草样品的加样回收率在80%-100%之间(平均回收率变异系数为5.4%)。通过比较游离植物雌激素的含量测定,本方法  相似文献   

14.
Extracts from red clover (Trifolium pratense), soybean (Glycine max.) and black cohosh (Cimicifuga racemosa) are frequently used as alternative compounds for hormone replacement therapy (HRT) to treat menopausal disorders. Fifteen commercially available products made either from red clover, soybean or black cohosh were tested in in vitro assays in this study. The main polycyclic phenolic compounds of soy and red clover products were biochanin A, genistein, daidzein, formononetin, and glycitein. In red clover products glycitein was not abundant. All the compounds showed clear estrogenic activity through estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) and affinity to progesterone receptor (PR) and androgen receptor (AR), whereas the compounds from black cohosh did not. This was corroborated by synthetic isoflavones such as biochanin A, daidzein, genistein and formononetin. They exerted affinity to PR and AR in the range of 0.39-110 mM. Statistical analysis applying principal component analysis (PCA) revealed that all red clover and soy products are grouped in different clusters. Red clover products showed a higher affinity to AR and PR than soy products, which is explained by the higher amount of isoflavones present. In vitro assays and chemical analysis showed that theoretical estrogenic activity expressed as equivalent E2 concentration is in the same range as recommended for synthetic estrogens. Broader spectrum of action and hypothesized lower side effects by action through ERbeta make them suitable for alternative hormone replacement therapy.  相似文献   

15.
The effects of soy isoflavones, genistein and daidzein, which exhibit estrogenic, anti‐estrogenic and/or tyrosine kinase inhibitory activity, on the dendritic morphology of B16 mouse melanoma cells were quantitatively evaluated and compared with those of 17β‐estradiol (Est) and tyrphostin, a tyrosine kinase inhibitor. Dendricity was significantly stimulated in the order of Est >> genistein > daidzein = tyrphostin, but not by glycosides of genistein and daidzein. In competition experiments, Est counteracted the stimulatory activity of genistein and daidzein, but enhanced the activity of tyrphostin additively, suggesting that genistein and daidzein agonized Est. In addition, when the concentration ratios of genistein/Est and daidzein/Est were higher than 5000 and 50 000, respectively, genistein and daidzein agonized Est. In contrast, when the ratio of daidzein/Est was lower than 500, daidzein antagonized Est. Furthermore, genistein and daidzein competed with each other in stimulatory activity. These observations suggest that: 1) dendricity is stimulated by agonists (genistein and daidzein) of Est and tyrosine kinase inhibitors (genistein and tyrphostin), 2) the concentration ratio of isoflavone aglycone/Est is very important as one regulatory factor for estrogenic and/or anti‐estrogenic activity, and 3) daidzein antagonizes not only Est but also genistein. It is concluded that a quantitative and simple dendricity assay using B16 mouse melanoma cells is available to evaluate estrogenic and anti‐estrogenic activity in vitro.  相似文献   

16.
Inhibition of estrogenic stimulation of gene expression by genistein   总被引:6,自引:0,他引:6  
Ratna WN 《Life sciences》2002,71(8):865-877
  相似文献   

17.
Yoshida N  Mizuno K 《Cytotechnology》2012,64(3):241-247
Phytoestrogens are a group of naturally occurring compounds that have weak estrogenic activity. Genistein and daidzein are major phytoestrogens produced by soybeans. It has been reported previously that at high concentration, some phytoestrogens inhibit cell cycle progression of mouse germinal vesicle (GV) oocytes, but the environmentally relevant level is much lower. Here we show the effects of low concentrations of the isoflavones genistein, daidzein and the daidzein metabolite, equol, on mouse oocyte maturation. GV oocytes denuded of cumulus cells were cultured in TaM medium containing low levels (5 μM) of genistein, daidzein. or equol. In all cases, the oocytes underwent normal GV break down, first polar body extrusion and became arrested at metaphase II (mII). As judged by fluorescence microscopy, the treated mII oocytes exhibited normal distributions of actin microfilaments, cortical granules and metaphase spindle formation with condensed metaphase chromatin. Moreover, mRNA expression levels of the cytostatic factors Emi2 and Mos were similar to those of their respective controls. These data suggest that exposure of maturing GV oocytes to environmental levels of genistein, daidzein or equol in vitro do not cause negative effects on maturation to produce mII oocytes.  相似文献   

18.
Previous studies have compared the oestrogenic properties of phytoestrogens in a wide variety of disparate assays. Since not all phytoestrogens have been tested in each assay, this makes inter-study comparisons and ranking oestrogenic potency difficult. In this report, we have compared the oestrogen agonist and antagonist activity of eight phytoestrogens (genistein, daidzein, equol, miroestrol, deoxymiroestrol, 8-prenylnaringenin, coumestrol and resveratrol) in a range of assays all based within the same receptor and cellular context of the MCF7 human breast cancer cell line. The relative binding of each phytoestrogen to oestrogen receptor (ER) of MCF7 cytosol was calculated from the molar excess needed for 50% inhibition of 3H]oestradiol binding (IC50), and was in the order coumestrol (35x)/8-prenylnaringenin (45x)/deoxymiroestrol (50x)>miroestrol (260x)>genistein (1000x)>equol (4000x)>daidzein (not achieved: 40% inhibition at 10(4)-fold molar excess)>resveratrol (not achieved: 10% inhibition at 10(5)-fold molar excess). For cell-based assays, the rank order of potency (estimated in terms of the concentration needed to achieve a response equivalent to 50% of that found with 17beta-oestradiol (IC50)) remained very similar for all the assays whether measuring ligand ability to induce a stably transfected oestrogen-responsive ERE-CAT reporter gene, cell growth in terms of proliferation rate after 7 days or cell growth in terms of saturation density after 14 days. The IC50 values for these three assays in order were for 17beta-oestradiol (1 x 10(-11)M, 1 x 10(-11)M, 2 x 10(-11)M), and in rank order of potency for the phytoestrogens, deoxymiroestrol (1 x 10(-10)M, 3 x 10(-11)M, 2 x 10(-11)M)>miroestrol (3 x 10(-10)M, 2 x 10(-10)M, 8 x 10(-11)M)>8-prenylnaringenin (1 x 10(-9)M, 3 x 10(-10)M, 3 x 10(-10)M)>coumestrol (3 x 10(-8)M, 2 x 10(-8)M, 3 x 10(-8)M)>genistein (4 x 10(-8)M, 2 x 10(-8)M, 1 x 10(-8)M)/equol (1 x 10(-7)M, 3 x 10(-8)M, 2 x 10(-8)M)>daidzein (3 x 10(-7)M, 2 x 10(-7)M, 4 x 10(-8)M)>resveratrol (4 x 10(-6)M, not achieved, not achieved). Despite using the same receptor context of the MCF7 cells, this rank order differed from that determined from receptor binding. The most marked difference was for coumestrol and 8-prenylnaringenin which both displayed a relatively potent ability to displace [3H]oestradiol from cytosolic ER compared with their much lower activity in the cell-based assays. Albeit at varying concentrations, seven of the eight phytoestrogens (all except resveratrol) gave similar maximal responses to that given by 17beta-oestradiol in cell-based assays which makes them full oestrogen agonists. We found no evidence for any oestrogen antagonist action of any of these phytoestrogens at concentrations of up to 10(-6)M on either reporter gene induction or on stimulation of cell growth.  相似文献   

19.
Equol is a metabolite produced in vivo from the soy phytoestrogen daidzein by the action of gut microflora. It is known to be estrogenic, so human exposure to equol could have significant biological effects. Equol is a chiral molecule that can exist as the enantiomers R-equol and S-equol. To study the biological activity of racemic (+/-)-equol, as well as that of its pure enantiomers, we developed an efficient and convenient method to prepare (+/-)-equol from available isoflavanoid precursors. Furthermore, we optimized a method to separate the enantiomers of equol by chiral HPLC, and we studied for the first time, the activities of the enantiomers on the two estrogen receptors, ERalpha and ERbeta. In binding assays, S-equol has a high binding affinity, preferential for ERbeta (K(i)[ERbeta]=16 nM; beta/alpha=13 fold), that is comparable to that of genistein (K(i)[ERbeta]=6.7 nM; beta/alpha=16), whereas R-equol binds more weakly and with a preference for ERalpha (K(i)[ERalpha]=50 nM; beta/alpha=0.29). All equol isomers have higher affinity for both ERs than does the biosynthetic precursor daidzein. The availability and the in vitro characterization of the equol enantiomers should enable their biological effects to be studied in detail.  相似文献   

20.
Isoflavonoids are compounds present in many legumes, but are derived in the human diet mainly from soybeans and various soybean-based food products. The major isoflavonoids occurring in soy are the glycosides of genistein and daidzein. The metabolic products of genistein metabolism in humans have not been clearly shown. The two main products of daidzein metabolism in humans appear to be equol and O-desmethylangolensin. Increasing evidence suggests that oxidative modification to low-density lipoprotein is involved in atherogenesis, and that natural antioxidants that prevent or inhibit oxidative damage to low-density lipoprotein may beneficially influence atherogenesis. In the present experiments, the effects of genistein and daidzein, and the daidzein metabolites equol and O-desmethylangolensin on Cu2+-induced oxidation of lipoproteins in serum were examined. Three concentrations of each compound (0.1 μM, 1 μM, 10 μM) were tested for antioxidant activity in six individual serum samples. All compounds tested inhibited lipoprotein oxidation. The minimum concentration for significant inhibition was 1 μM for genistein and daidzein (P < 0.05), and 0.1 μM equol and O-desmethylangolensin (P < 0.05). Equol and O-desmethylangolensin were more potent inhibitors of in vitro lipoprotein oxidation in serum than the two major dietary isoflavonoids. This study has demonstrated that soybean isoflavonoids and metabolic products of daidzein metabolism inhibit lipoprotein oxidation in vitro. Human intervention studies are needed to determine if these compounds can influence oxidation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号