首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic-pituitary-adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system. The hypothalamic-pituitary-gonadal axis and sex hormones also have an important immunoregulatory role. The immune system signals the CNS through immune mediators and cytokines that can cross the blood-brain barrier, or signal indirectly through the vagus nerve or second messengers. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. This review discusses neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation, rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis.  相似文献   

2.
There is a substantial literature describing the interactions between the endocrine and immune systems. Although such interactions are less well known within the brain, one major brain function altered during inflammation and infection and by several endocrine hormones is sleep. Pathological disturbances, be they inflammation, infectious disease, and/or sleep deprivation, result in altered hypothalamus-pituitary function and cytokine metabolism. In respect to hormone secretion from the pituitary, cytokines are now recognized to play an important role in modulating the neuroendocrine system. Changes in sleep provide a useful illustration of the interactions between cytokines and the hypothalamus-pituitary axis. Evidence linking interleukin-1 (IL-1) to growth hormone releasing hormone and to corticotropin releasing hormone in regard to their effects on sleep is reviewed.  相似文献   

3.
Bidirectional interdependence between the immune system and the CNS involves the intervention of common cofactors. Cytokines are endogenous to the brain, endocrine and immune systems. These shared ligands are used as a chemical language for communication. Such interaction suggests an immunoregulatory role for the brain, and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is associated with effects of stress on immunity. Cytokines are thus capable of modulating responses in the CNS, while neuropeptides can exert their effects over cellular groups in the immune system. One way is controlled by the HPA axis, a coordinator of neuroimmune interactions that is essential to unravel in order to elucidate vital communications in a manner that this crosstalk remains a cornerstone in perpetuating a stance of homeostasis.  相似文献   

4.
It is a confirmed fact that in females both the humoral and cell mediated immune response is more active than in males. A large amount of information supports the view that hormones of the endocrine system are intimately involved in this immunological dimorphism. Such hormones include the gonadal steroids, the adrenal glucocorticoids, growth hormone (GH) and prolactin (Prl) from the pituitary, thymic hormones, and substances generated by activated lymphocytes. It is suggested that a complex medley of these hormonal interactions effect both developing lymphocytes within the microenvironment and regulate adult effector cells. The most important of these hormonal interactions leading to immunological dimorphism are the effects elicited by estrogen (E) elaborated at elevated levels from the female ovary after puberty. Elevated E leads to basal GH secretion, increased Prl, and increased thymosin release, all of which are hypothesized to effect lymphocyte development and stimulate adult T- and B-cell function in females. Interactions of hormonal regulatory axes involving the hypothalamus, pituitary, gonads, adrenals, and thymus are also thought to be involved. Factors elaborated by activated immune cells including IL-1 and IL-2 may also play a role in down regulation of these responses. Finally, genetic components are also considered pertinent especially under conditions of pathological disequilibrium leading to autoimmune disease. While the benefits provided by immunological dimorphism are still not entirely clarified, since sex hormones are intimately involved in immunological regulation it is quite possible that the increased immune response in females allows them to compensate for the increased physiological stress which accompanies reproduction. The final outcome would thus be the assurance of reproductive success of the species.  相似文献   

5.
A classical distinction between endocrine cells and neurons cannot be accepted without exception. This dichotomy was first challenged by the concept of neurosecretion. Recent observations indicate that hormone synthesis takes place in many extraendocrine tissues since the gene expression for prohormone synthesis seems to be common for all eukaryotes although the secretion of biological active hormone products is limited by posttranslational processing for differentiated cells. Increasing number of data support the view that regulation of pituitary hormone secretion is under multifactorial control in addition to specific signaling molecular effects of hormone-releasing hormones. Such modulators are co-secreted messengers from hypothalamic sources or co-functioning at the pituitary cell level. Multichannel regulation of pituitary tropic hormones appears to be important for understanding the interactions of pharmacological agents with pituitary hormone release, on the one hand, and the modulation of hormone release in pathological conditions, on the other hand. Perinatal transient hazards may induce permanent alterations in adaptive behavior when tested in adult age. Corticosteroid-induced deviation of avoidance behavioral reactions may be opposed by simultaneous administration of ACTH-like peptides. These observations revealed that a balance of the glucocorticoids and ACTH-like peptides in perinatal period basically determine the adaptative reaction of animals in adult age. Immune system may be called as a mobile brain since its tremendous information capacity and its responsiveness to alterations of chemical environmental signals. Recent data support the view that there is a bidirectional communication between the neuro-endocrine adaptational axis and the immune system. Stress hormones can alter the immune response and mononuclear cells produce factors that change the neuroendocrine regulation. In addition to these, prohormones are synthesized in mononuclear cells that may be involved in regulation of signalization between cells and in activation of endocrine system and brain functions.  相似文献   

6.
The administration of bacterial lipopolysaccharide (LPS) markedly affects pituitary secretion, and its effects are probably mediated by cytokines produced by immune cells or by the hypothalamo-pituitary axis itself. Since neurokinin A (NKA) plays a role in inflammatory responses and is involved in the control of prolactin secretion, we examined the in vivo effect of LPS on the concentration of NKA in hypothalamus and pituitary (assessed by RIA) and serum prolactin levels in male rats. One hour after the intraperitoneal administration of LPS (250 microg/rat), NKA content was decreased in the posterior pituitary but not in the hypothalamus or anterior pituitary. Three hours after injection, LPS decreased NKA concentration in the hypothalamus and anterior and posterior pituitary. In all the conditions tested, LPS significantly decreased serum prolactin. We also examined the in vitro effects of LPS (10 microg/ml), interleukin-6 (IL-6, 10 ng/ml) and tumor necrosis factor alpha (TNF-alpha, 50 ng/ml) on hypothalamic NKA release. Interleukin-6 increased NKA release without modifying hypothalamic NKA concentration, whereas neither LPS nor TNF-alpha affected them. Our results suggest that IL-6 may be involved in the increase of hypothalamic NKA release induced by LPS. NKA could participate in neuroendocrine responses to endotoxin challenge.  相似文献   

7.
Cytokines, the polypeptide mediators of the immune system, were shown to exert numerous actions on endocrine functions. Bidirectional links based on the sharing of mediators and receptors between the immune and neuroendocrine systems lead to the concept of the immune-neuroendocrine system that seems to constitute an important and sophisticated regulatory system in the homeostasis. Several cytokines were found to be involved in the pathogenesis of diseases of the endocrine system. In this brief review, we attempt to present a general outline of the local actions of cytokines on cells of endocrine organs with an emphasis on disease etiology (pituitary tumours and autoimmune endocrine diseases in particular).  相似文献   

8.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems. The metabolic hormone leptin appears to be mediating trade-offs between the immune system and other physiological systems through its actions on immune cells and the brain. Here we review the evidence in both mammalian and non-mammalian vertebrates that suggests leptin is involved in regulating immune responses, inflammation, and sickness behaviors. Leptin has also been implicated in the regulation of seasonal immune responses, including sickness; however, the precise physiological mechanisms remain unclear. Thus, we discuss recent data in support of leptin as a mediator of seasonal sickness responses and provide a theoretical model that outlines how seasonal cues, leptin, and proinflammatory cytokines may interact to coordinate seasonal immune and sickness responses.  相似文献   

9.
Microbes generate a vast array of different types of conserved structural components called pathogen-associated molecular patterns(PAMPs),which canbe recognized by cells of the innate immune system.This recognition of "nonself" signatures occurs through host pattern recognition receptors(PRRs),suggesting that microbial-derived signals are good targets for innate immunity to discriminate between self- and nonself.Such PAMP-PRR interactions trigger multiple but distinct downstream signaling cascades,subsequently leading to production of proinflammatory cytokines and interferons that tailor immune responses to particular microbes.Aberrant PRR signals have been associated with various inflammatory diseases and fine regulation of PRR signaling is essential for avoiding excessive inflammatory immune responses and maintaining immune homeostasis.In this review we summarize the ligands and signal transduction pathways of PRRs and highlight recent progress of the mechanisms involved in microbe-specific innate immune recognition during immune responses and inflammation,which may provide new targets for therapeutic intervention to the inflammatory disorders.  相似文献   

10.
11.
12.
Cytokines regulate numerous physiological and pathological processes in the central nervous system (CNS), i.e. they function both as immune regulators and neuromodulators. Acting upon the CNS via different ways, cytokines, mainly proinflammatory ones IL-1beta and TNF-alpha, can disturb physiological functions of the CNS, cause neurotoxic and neurodegenerative damage and stimulate IL-1beta synthesis in hypothalamus nuclei and posterior pituitary. They can produce stress-like effects upon the CNS and affect the activity of the axis hypothalamus--pituitary--adrenal glands, levels of neuropeptides in hypothalamic regions of brain, synthesis and utilization of central monoamines. These influences can implement the effects of sensitization, which enhances neuroendocrine responses to later stresses. Microglia and astrocytes, secondary messengers and interaction between hypothalamus and anterior pituitary play an important role in range of these processes as well as in the maintenance of Th1/Th2 cytokine balance.  相似文献   

13.
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.  相似文献   

14.
The immune system driven by cytokines is now known to be influenced by various other endocrine glands and its hormones. Results of the present study indicate a bidirectional relation between the pineal-thymus axis and the immune system status of an Indian tropical rodent, Funambulus pennanti, during winter months (reproductive inactive phase), when it faces maximum challenges from nature. Pinealectomy during the reproductive inactive phase inhibited thymus and spleen functions, which resulted in significant changes in leukocyte and lymphocyte counts and T-cell-mediated immune function (measured in terms of delayed-type hypersensitivity response to oxazolone). Blastogenic responses of lymphoid cells (thymocytes, splenocytes, and lymph node cells) also decreased following ablation of the pineal gland. To check the definite role of the pineal gland we injected melatonin into pinealectomized squirrels, and the suppressed immune function was significantly restored. Neuroendocrine control of the pineal gland on the histocompatible tissues in this seasonal breeder, F. pennanti, suggests an adaptive mechanism of the immune system for survival in the tropical zone. J. Exp. Zool. 289:90-98, 2001.  相似文献   

15.
Neuroendocrine aspects of aging: experimental data   总被引:1,自引:0,他引:1  
Aging is characterized by changes in neuroendocrine/endocrine functions which are manifest in female reproductive physiology and less perceptible in other functions such as thyroid, adrenal or growth/metabolic functions. The contribution of each level of the axis - hypothalamus, adenohypophysis or peripheral tissues - is not clearly established. Functional impairments with age are recognized in the peripheral glands (gonad, thyroid, adrenal) as well as in the pituitary, but increasing evidence is accumulating for a marked contribution of the hypothalamus in the age-associated endocrine changes observed in animals and humans. In old rats, multineuronal dysfunctions are demonstrated in the hypothalamus, with a documented decline in the activity of the neurons producing dopamine and thyrotropin-releasing hormone, and to a lesser extent luteinizing hormone- and growth hormone-releasing hormones, and alterations in regulatory mechanisms of these neurons are disclosed. Moreover, impairments are observed in the processing - binding, accumulation and intracellular distribution - of hypothalamic hormones in the adenohypophysis of old rats. Taken together, these observations are supportive of the view that the neuroendocrine/endocrine changes appearing with age result from a complex balance of functional alterations occurring at each level - central and peripheral - of the axis.  相似文献   

16.
The classical distinction between hormones and cytokines has become increasingly obscure with the realization that homeostatic responses to infection involve coordinated changes in both the neuroendocrine and immune systems. The hypothesis that these systems communicate with one another is supported by the ever-accruing demonstrations of a shared molecular network of ligands and receptors. For instance, leukocytes express receptors for hormones and these receptors modulate diverse biological activities such as the growth, differentiation and effector functions. Leukocyte lineages also synthesize and secrete hormones, such as insulin-like growth factor-I (IGF-I), in response to both growth hormone (GH) and also to cytokines such as tumor necrosis factor-α (TNF-α). Since hormones share intracellular signaling substrates and biological activities with classical lymphohemopoietic cytokines, neuroendocrine and immune tissues share a common molecular language. The physiological significance of this shared molecular framework is that these homeostatic systems can intercommunicate. One important example of this interaction is the mechanism by which bacterial lipopolysaccharide, by eliciting a pro-inflammatory cytokine cascade from activated leukocytes, modulate pituitary GH secretion as well as other CNS-controlled behavioral and metabolic events. This article reviews the cellular and molecular basis for this communication system and proposes novel mechanisms by which neuroendocrine-immune interactions converge to modulate disease resistance, metabolism and growth.  相似文献   

17.
The hypothalamic-pituitary-adrenal (HPA) axis plays a primary role in the body response to stresses. Activation of the HPA axis results in the production of corticosteroid hormones that influence a wide variety of body functions, including immunity, metabolism, ion exchange, and behavior. A well-balanced regulation of stress responses is pivotal for maintaining intrabody homeostasis. The HPA axis is regulated at several levels, including stimulatory or inhibitory signals from the brain mediated through neurotransmitter systems and the suppressive feedback influence of corticosteroids themselves. Corticosteroids affect the HPA axis through binding to the glucocorticoid and mineralocorticoid receptors located in the hippocampus. Genes encoding these receptors have several polymorphic regions in which the alleles are associated with different basal and stress-induced levels of hormones secreted in the course of HPS axis stimulation. Additionally, genetic variants of neurotransmitter systems involved in the activation or suppression of the HPA axis have been found. Thus, the given genetic variations are major contributors to the HPA axis-mediated individual resistance or susceptibility to stresses.  相似文献   

18.
Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant-pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant-pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA-dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA-dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens.  相似文献   

19.
下丘脑-垂体-肾上腺皮质轴应激反应的中枢控制   总被引:53,自引:0,他引:53  
Yang Q 《生理科学进展》2000,31(3):222-226
应激反应是所有生物对紧张性事件的适应性反应,对生物的存活具有十分重要的意义。应激反应的主要特征是下丘脑-垂体-肾上腺皮质(HPA)轴激活。HPH轴激活的呆区控制十分复杂。海马参与整合感知的信息、解释环境信息的意义及定调行为反应和神经内分泌反应。杏仁核是应激性行为反应以及自主神经和神经内分泌反应的行旅地部位。下丘脑室6 有直接激活HPA轴的作用。负反馈机制、下丘脑局部回路和细胞因子也可能参与了调节H  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号