首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D M Hunt 《Life sciences》1976,19(12):1913-1919
The injection of copper chloride overcomes the lethality and pigment deficiency in the brindled (Mobr) mouse mutant but copper levels remain depressed in the liver and brain, and a further accumulation occurs in the kidney. The copper-dependent synthesis of brain noradrenaline returns to normal but the activity of brain cytochrome c oxidase, although increased, remains depressed. Significant changes in tissue copper content of female brindled heterozygotes are reported and in each case, the changes exceed those expected on the basis of X-inactivation. The significance of these results to the development of a satisfactory treatment regime for this disease is discussed.  相似文献   

2.
Tissue copper levels of brindled (Mobr) mice and normal litter-mates after single and repeated dosing with CuCl2 and/or D-penicillamine are examined, together with a study of the cytosol distribution of copper after CuCl2 treatment. The results confirm that the mutant mouse kidney is capable of extensive copper accumulation in association with the low MW copper-binding protein. Deficient tissues such as brain, heart and spleen are able to sequester sufficient of the exogenous copper to raise their levels to the normal control level, whereas mutant liver levels, even after copper treatment, remain below normal, indicating that the Mo gene affects the ability of the liver to retain copper.  相似文献   

3.
1. Extensive treatment of rabbit kidney microsomes with phosphatidylinositol-specific phospholipase C under various conditions never resulted in more than 75% hydrolysis of the substrate. 2. The non-degraded fraction of the phosphatidylinositol (10–12 nmol per mg microsomal protein) could be recovered only by an acidic extraction procedure. 3. The (Na+ + K+)-ATPase activity found in those membranes was not affected by this treatment. 4. Complete degradation of phosphatidylinositol could be easily achieved when the phospholipase was applied to rat liver microsomes which do not contain any detectable (Na+ + K+)-ATPase activity. 5. It is concluded that in rabbit kidney microsomes a close association exist between the (Na+ + K+)-ATPase and that fraction of the phosphatidylinositol that is directly involved in the maintenance of its activity.  相似文献   

4.
5.
Dystrophic mice of the C57B1 dy2Jdy2J strain and of the ReJ 129 dydy strain and littermate controls were used to prepare met-tRNAfMet binding factors. The tissues were homogenized and fractions were obtained which contained ribosomes. The binding factors were assayed by the binding of [35S]methionyl-tRNA to control liver ribosomes. The binding, i.e. eukaryotic initiation factor 2 (elF 2) activity, was measured in brain, liver and muscle and in all of these tissues there was a significant decrease in the dystrophic mice. This decrease in initiation factor activity of hindleg muscle resembled, in the direction of the effect, the decrease in elongation factor activity of hindleg muscle resembled, in the of dydy mice previously reported by our laboratory. Thus these two defects, taken together may help to explain the marked wasting of the muscles. The decrease in brain in both strains provides evidence for nervous tissue involvement in genetic dystrophy.  相似文献   

6.
The phoS periplasmic protein, implicated in alkaline phosphatase regulation, is shown to be involved in inorganic phosphate (Pi) transport in E. coli. Although phoS? cells dependent upon the PST system for Pi transport can grow in minimal medium with 1 mM Pi as source of phosphorus, the affinity of these cells for Pi is greatly reduced; Km = 18 μM compared with Km = 0.4 μM for phoS+ cells. phoS? cells dependent upon the PST Pi transport system acquire the ability to accumulate Asi from the medium in contrast to phoS+ cells which exclude this toxic anion. It would appear that the periplasmic phoS protein is not essential for Pi accumulation but is involved in maintaining the specificity of the PST Pi transport system.  相似文献   

7.
A microsomal fraction rich in (Na+ + K+)-ATPase has been isolated from the outer medulla of pig kidney. (Mg2+ + K+)-activated ouabain-sensitive phosphatase activity was studied in this preparation treated with arylsulphatase, an enzyme that specifically hydrolyzes ceramide galactose-3-sulphate. The activity of phosphatase was inactivated in proportion to the amount of sulphatide hydrolyzed. A maximum inactivation of ouabain-sensitive activity was obtained with 60% of the sulphatide content hydrolyzed. The inactivation caused by arylsulphatase was partially reversed by the sole addition of sulphatide. The evidence offered in this paper about sulphatide function in the sodium pump mechanism supports the idea that sulphatides are involved in the K+-activated phosphatase, a partial reaction of the (Na+ + K+)-ATPase.  相似文献   

8.
The distribution of HCO3?-ATPase activity was studied in cell fractions prepared from homogenates of rat liver. The level of mitochondrial contamination in the microsomal fraction depended on the fractionation procedure and on the method of homogenization. With proper care, microsomes with undetectable mitochondrial contamination could be prepared. These microsomes had no detectable HCO3?-ATPase activity. Approximately 85 % of the total HCO3?-ATPase activity of the post 6000 x g · min supernatant was recovered in the mitochondrialfraction. The properties of this mitochondrial HCO3?-ATPase were not distinguishable from those of the various microsomal HCO3?-ATPase previously described by other investigators.  相似文献   

9.
Glucose (20 mM) released insulin from pancreatic islets of C57BL6J-db2Jdb2J mice, the response being potentiated by 1 mM 3-isobutyl-1-methylxanthine. Islets of C57BLKsJ-dbdb mice failed to respond to glucose and released only little insulin when challenged with both glucose and methylxanthine. After incubation with 0 or 20 mM glucose alone the islet content of adenosine 3′:5′-cyclic monophosphate did not differ between the two types of mice or between glucose concentrations. 3-Isobutyl-1-methylxanthine increased the islet adenosine 3′:5′-cyclic monophosphate markedly in 6J-db2Jdb2J mice but not significantly in KsJ-dbdb mice.  相似文献   

10.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

11.
From phosphomannose isomerase-less mutants of E. coli strains 08 and 09, rfe? derivatives were constructed by recombination with a Salmonella rfe? donor. In contrast to membranes from the parent E. coli strains, those from the rfe? recombinants did not synthesize the 08 or 09 mannan from GDP mannose in vitro. They could, however, be restored to biosynthetic activity with butanol extracts from the E. coli rfe+ bacteria. This indicated that the rfe mutation affects the synthesis of a hydrophobic acceptor.  相似文献   

12.
13.
Activity levels of sulfotransferases, requisite for the sulfation of chondroitin sulfate proteoglycan, were measured in cell-free homogenates prepared from neonatal epiphyseal cartilage of normal C57B1/6J or homozygous brachymorphic mice. In the presence of [35S]-PAPS only or [35S]-PAPS plus an exogenous sulfate acceptor, comparable amounts of 35SO42? were incorporated into chondroitin sulfate by the normal and mutant types of cartilage. In contrast, the mutant cartilage catalyzed the conversion of only 30% of the 35SO42? into chondroitin sulfate as compared to normal mouse cartilage when synthesis was initiated from ATP and H235SO4. These results suggest that the production of an undersulfated proteoglycan which has previously been reported in brachymorphic mice (Orkin, R.W. etal. (1976) Devel. Biol. 50, 82–94) may result from a defect in the synthesis of the sulfate donor PAPS.  相似文献   

14.
The changes in hepatic Ca2+protein activator-dependent and independent cAMP phosphodiesterase activity during the development of chick embryo were investigated. Nearly all of the cAMP phosphodiesterase found in the liver during the early embryonic stage was the Ca2+protein activator-dependent enzyme; however, this enzyme progressively diminished and the independent enzyme increased proportionately with embryonic development. In the adult liver, little or no Ca2+protein activator-dependent enzyme activity could be observed. These results indicate that the concentration of intracellular cAMP may be regulated by these two enzymes in compliance with the development of the chick.  相似文献   

15.
A microsomal fraction from canine brain gray matter has been extracted with the detergent sodium dodecyl sulfate to partially purify the membrane bound Na+ + K+)-stimulated adenosine triphosphatase. Phospholipid, glycolipid, and a family of other glycoproteins are also enriched by the procedure; it is proposed that the product is an intrinsic membrane protein fraction. 6–8-fold purification of (Na+ + K+)-ATPase is obtained without solubilizing the enzyme and without irreversibly altering its turnover number. Final specific activities are 350–400 μmol of ATP hydrolyzed/h per mg protein. The stimulation and reversible inactivation of the (Na+ + K+)-ATPase by dodecyl sulfate were examined for information relevant to the mechanism of action of the detergent.  相似文献   

16.
Seedlings carrying mutations in regulatory genes for protochlorophyll(ide) synthesis accumulate protochlorophyll(ide) in darkness in amounts exceeding the wildtype level. Thus, +/tig-d12 and tig-b24tig-b24accumulate 2-fold, tig-o34tig-o34 5- to 6-fold, and tig-d12tig-d12 15-fold more protochlorophyll(ide) than the wild type.The amount of photoconvertible protochlorophyll(ide) accumulated in darkness is the same in all genotypes, despite the large differences in total protochlorophyll(ide) content, indicating a constant number of photoconversion sites.When briefly illuminated leaves are returned to darkness, regeneration of active protochlorophyll(ide) from the pool of inactive protochlorophyll(ide) takes place in wild-type and mutant leaves. Compared to the wild type, the rate of protochlorophyll(ide) activation during 4- and 10-min dark periods is higher in +/tig-d12, tig-b24tig-b24, and tig-o34tig-o34, but lower in tig-d12tig-d12.There was no indication that the accumulation of protochlorophyll(ide) influences the conversion sites of the protochlorophyll(ide) holochrome, as the kinetics of photoconversion of initially active protochlorophyll(ide) in leaves with the genotypes +/+, +/tig-o34, and tig-o34tig-o34 are similar or identical.  相似文献   

17.
Human red cell and guinea pig kidney (Na+ + K+)-ATPase were phosphorylated at 0°C. Using concentrations of ATP ranging from 10?6 to 10?8 M, ATP-dependent regulation of reactivity is observed with red cell but not kidney (Na+ + K+)-ATPase at 0°C. In particular, with the red cell enzyme only, the following are observed: (i) the ratio of enzyme-bound ATP (E·ATP, measured by the pulse-chase method of Post, R.L., Kume, S., Tobin, T., Orcutt, B. and Sen, A.K. (1969) J. Gen. Physiol. 54, 306s-326s) to steady-state level of total phosphoenzyme (EP) decreases with decrease in ATP concentration and (ii) the apparent turnover of phosphoenzyme (ratio of Na+-stimulated ATP hydrolysis to level of total EP at steady state) also varies as a function of ATP concentration. In addition, when EP is formed at very low ATP (0.02 μM), and then EDTA is added, rapid disappearance of a fraction of EP occurs, presumably due to ATP resynthesis, only with the red cell enzyme. These differences in behaviour of the red cell and kidney enzymes are explained on the basis of the observed predominance of K+-insensitive EP in red cell, but K+-sensitive EP in kidney (Na+ + K+)-ATPase at 0°C.  相似文献   

18.
The permeability of the lysosomal membrane to small anions and cations was studied at 37°C and pH 7.0 in a lysosomal-mitochondrial fraction isolated from the liver of untreated rats. The extent of osmotic lysis following ion influx was used as a measure of ion permeancy. In order to preserve electroneutrality, anion influx was coupled to an influx of K+ in the presence of valinomycin, and cation influx was coupled to an efflux of H+ using the protonophore 3-tert-butyl-5,2′-dichloro-4′-nitrosalicilylanilide. Lysosomal lysis was monitored by observing the loss of latency of two lysosomal hydrolases.The order of permeability of the lysosomal membrane to anions was found to be SCN? > I? > CH3COO? > Cl? ≈ HCO?3 ≈ Pi > SO42? and that to cations Cs+ > K+ > Na+ > H+. These orders are largely in agreement with the lyotropic series of anions and cations.The implications of these findings for the mechanism by means of which a low intralysosomal pH is produced and maintained are discussed.  相似文献   

19.
A range of metabolite concentrations have been determined in the liver of the adult and fetal guinea pig during the latter half of gestation. Adenine nucleotides showed little change during development of the fetal liver and the only major difference from the adult was a low ADP concentration. The hexose phosphates, particularly fructose 1,6-diphosphate, were higher and the triose phosphates in the glycolytic pathway after glyceraldehyde 3-phosphate were lower in the fetal liver. Cytosolic NAD+NADH ratios were comparable in both adult and fetal livers as were cytosolic NADP+NADPH ratios for the last 15–20 days of gestation. The metabolite concentrations have been used to indicate that glycolysis in the fetal guinea pig liver is controlled largely by hexokinase, glyceraldehyde 3-phosphate dehydrogenase, and pyruvate kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号