首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Miyano  S Ogasawara  C H Han  H Fukuda  M Tamura 《Biochemistry》2001,40(46):14089-14097
Activation of the phagocyte NADPH oxidase, a superoxide-generating enzyme, involves assembly of cytosolic p47(phox), p67(phox), and rac with the membrane-associated cytochrome b(558). Following cell-free activation, enzymatic activity is highly labile [Tamura, M., Takeshita, M., Curnutte, J. T., Uhlinger, D. J., and Lambeth, J. D. (1992) J. Biol. Chem. 267, 7529-7538]. In an attempt to stabilize the activity and to investigate the nature of the complex, we have produced fusion proteins between rac and a C-terminal truncated form of p67(phox) (residues 1-210, 67N), which is a minimal active fragment. In a cell-free system, a fusion protein 67N-rac had higher activity and a 3-fold higher affinity than the individual cytosolic proteins, and 67N-Ser3-rac, which has a longer linker, showed a similar activity with the individual proteins. In contrast, rac-67N, a fusion in the opposite orientation, showed considerably lower activity. The enzyme activity reconstituted with 67N-rac showed a 10-fold higher stability and a lower K(m) for NADPH than the individual components. In the absence of p47, 67N-rac fusion protein at a high concentration showed nearly full activation, which was higher than that with the individual components. These results indicate that covalent binding between p67N and rac in the correct order produces a more stable complex than the individual components, suggesting that interactions among the subunits significantly influence the duration of the oxidase activation. On the basis of these findings, we propose a model for the topology among rac, 67N, and cytochrome b(558).  相似文献   

2.
Miyano K  Fukuda H  Ebisu K  Tamura M 《Biochemistry》2003,42(1):184-190
Activation of the phagocyte NADPH oxidase occurs via assembly of cytosolic p47(phox), p67(phox), and Rac with the membrane-bound flavocytochrome b(558). Recently, we have found that p67(phox)-(1-210) (p67N) fused with p47(phox)-(1-286) (p47N) or with Rac efficiently stabilizes the oxidase in a cell-free reconstitution system. In an attempt to further stabilize the oxidase, we herein used a constitutively active Rac, RacQ61L, and examined its effect on the oxidase stability. The half-life (t(1/2)) of the activity reconstituted with wild-type Rac was 12 min at 37 degrees C, which was extended 6-fold by RacQ61L. Also, the stability of the oxidase without p47(phox) increased 8-fold using RacQ61L. RacQ61L had a higher affinity for the complex than wild-type Rac and increased the affinity of p67N for the complex. Far-western blotting showed an enhanced binding between RacQ61L and p67N. The oxidase was stabilized by nanomolar FAD, and RacQ61L lowered the FAD concentration required. The combination of RacQ61L and a fusion protein consisting of p67N and p47N produced an extremely stable enzyme (t(1/2) = 184 min at 37 degrees C). The effectiveness of RacQ61L and fusion proteins on stabilization was in the following order: p67N-Rac < p67N + RacQ61L < or = p67N-RacQ61L < p67N-p47N + RacQ61L. These results indicate that a tightly bound ternary complex of p67(phox), Rac, and p47(phox) is very effective in maintaining the oxidase and confirm that the longevity of the activated state requires continuous association of these components. This simple and efficient method of stabilization may provide a useful tool to elucidate the nature of the activated oxidase.  相似文献   

3.
Activation of the phagocyte NADPH oxidase involves assembly of p47(phox), p67(phox), Rac, and flavocytochrome b(558), and the activation can be triggered in a cell-free system with an anionic amphiphile. We find that the activated oxidase in a pure cell-free system was rapidly inactivated upon dilution. When the activated oxidase was treated with a chemical cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, the half-life of the oxidase in dilution was extended from 1min to 4h at 25 degrees C. The cross-linked oxidase was resistant to inhibition by inactive flavin analogs, indicating that cross-linking prevents flavin exchange. When a fusion protein p67N-p47N plus RacQ61L was added, flavocytochrome b(558) became spontaneously active. Cross-linking of this mixture produced an oxidase that was extremely stable to dilution (t(1/2)=6.6h). Western blotting analysis showed the presence of a cross-link between p67N-p47N and RacQ61L. These results suggest that covalently linked phox components prevents FAD loss and stabilizes the longevity of the stoichiometric complex, extending the lifespan of the active oxidase.  相似文献   

4.
Tamura M  Shiozaki I  Ono S  Miyano K  Kunihiro S  Sasaki T 《FEBS letters》2007,581(23):4533-4538
p40(phox) activated phagocyte NADPH oxidase without p47(phox) in a cell-free system consisting of p67(phox), Rac and cytochrome b(558) relipidated with phosphatidylinositol 3-phosphate. The activation reached to 70% of that by p47(phox). Addition of p47(phox) slightly increased the activation, but not additively. p40(phox) improved the efficiency of p67(phox) in the activation. The C-terminus-truncated p67(phox), p40(phox)(D289A), p40(phox)(R58A), or p40(phox)(W207R) showed an impaired activation. A peptide corresponding to the p22(phox) Pro-rich region suppressed the activation, and far-western blotting revealed its interaction with p40(phox) SH3 domain. Thus, p40(phox) can substitute for p47(phox) in the activation, interacting with p22(phox) and p67(phox) through their specific regions.  相似文献   

5.
Bacterial type III secretion system drives the translocation of virulence factors into the cystosol of host target cells. In phagocytes and in Epstein-Barr virus immortalized B lymphocytes, NADPH oxidase generates O(-2) through an electron transfer chain the activity of which depends on the assembly of three, p67(phox), p47(phox) and p40(phox) cytosolic activating factors with Rac 1/2 and a membrane redox component, cytochrome b(558). In p67(phox) deficient chronic granulomatous disease (CGD) patients, p67-phox is missing and NADPH oxidase activity is abolished. ExoS is a virulence factor of Pseudomonas aeruginosa which is secreted via the type III secretion system: it was fused with p67(phox). Pseudomonas aeruginosa synthesized and translocated the hybrid ExoS-p67(phox) fusion protein into the cytosol of B lymphocytes via the type III secretion system. Purified ExoS-p67(phox) hybrid protein was as efficient as normal recombinant p67(phox) in cell-free reconstitution of NADPH oxidase activity. Therefore, ExoS-p67(phox) was transferred via the type III secretion system of Pseudomonas aeruginosa into the cytosol of B lymphocytes from a p67(phox)-deficient CGD patient and functionally reconstituted NADPH oxidase activity. In the complementation process, ExoS acted as a molecular courier for protein delivery: the reconstitution of an active NADPH oxidase complex suggests type III secretion system to be a new approach for cellular therapy.  相似文献   

6.
Nisimoto Y  Ogawa H  Miyano K  Tamura M 《Biochemistry》2004,43(29):9567-9575
A series of truncated forms of His(6)-tagged gp91phox were expressed, solubilized, and purified in the presence of 30 microM FAD. The truncated gp91phox with the longest sequence in the C-terminal region (221-570) (gp91C) showed the highest activity (turnover rate, 0.92) for NADPH diaphorase in the presence of either 0.3% Triton X-100 or 0.5% Genapol X-80. Activity was not inhibited by superoxide dismutase but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium. The flavinated gp91C contained approximately 0.9 mol of FAD/mol of protein (MW 46 kDa) and 12% alpha-helix content. In the absence of p47phox, p67phox showed considerable activation of gp91C in the presence of Rac. Carboxyl-terminal truncated p67phox (1-210) (p67N), which is the minimal active fragment, was fused with Rac or Q61LRac. The fusion protein p67N-Rac (or p67N-Q61LRac) showed a 2-fold higher stimulatory effect on NBT reductase activity of gp91C than the combination of the individual cytosolic p67N and Rac proteins. In contrast, Rac-p67N, a fusion with the opposite orientation, showed a smaller significant effect on the enzyme activity. The EC(50) values for p67phox, p67N, p67N-Rac, and Rac-p67N were 8.00. 4.35, 2.56, and 15.2 microM, respectively, while the K(m) value for NADPH in the presence and absence of the cytosolic components was almost the same (40-55 microM). In the presence of Rac, p67N or p67phox bound to gp91C with a molar ratio of approximately 1:1 but neither p67N nor Rac alone showed significant binding.  相似文献   

7.
In the phagocytic cell, NADPH oxidase (Nox2) system, cytoplasmic regulators (p47(phox), p67(phox), p40(phox), and Rac) translocate and associate with the membrane-spanning flavocytochrome b(558), leading to activation of superoxide production. We examined membrane targeting of phox proteins and explored conformational changes in p40(phox) that regulate its translocation to membranes upon stimulation. GFP-p40(phox) translocates to early endosomes, whereas GFP-p47(phox) translocates to the plasma membrane in response to arachidonic acid. In contrast, GFP-p67(phox) does not translocate to membranes when expressed alone, but it is dependent on p40(phox) and p47(phox) for its translocation to early endosomes or the plasma membrane, respectively. Translocation of GFP-p40(phox) or GFP-p47(phox) to their respective membrane-targeting sites is abolished by mutations in their phox (PX) domains that disrupt their interactions with their cognate phospholipid ligands. Furthermore, GFP-p67(phox) translocation to either membrane is abolished by mutations that disrupt its interaction with p40(phox) or p47(phox). Finally, we detected a head-to-tail (PX-Phox and Bem1 [PB1] domain) intramolecular interaction within p40(phox) in its resting state by deletion mutagenesis, cell localization, and binding experiments, suggesting that its PX domain is inaccessible to interact with phosphatidylinositol 3-phosphate without cell stimulation. Thus, both p40(phox) and p47(phox) function as diverse p67(phox) "carrier proteins" regulated by the unmasking of membrane-targeting domains in distinct mechanisms.  相似文献   

8.
The NADPH oxidase of phagocytes is a membrane-bound heterodimeric flavocytochrome which catalyses the transfer of electrons from NADPH in the cytoplasm to oxygen in the phagosome. A number of cytosolic proteins are involved in its activation/deactivation: p47phox, p67phox, p40phox and the small GTP-binding protein, rac. The cytosolic phox proteins interact with the cytoskeleton in human neutrophils and, in particular, an interaction with coronin has been reported (Grogan A., Reeves, E., Keep, N. H., Wientjes, F., Totty, N., Burlingame, N. L., Hsuan, J., and Segal, A. W. (1997) J. Cell Sci. 110, 3071-3081). Here, we report on the interaction of another cytoskeletal protein, moesin, with the phox proteins. Moesin belongs to the ezrin-radixin-moesin family of F-actin-binding proteins and we show that it binds to p47phox and p40phox in a phosphoinositide-dependent manner. Furthermore, we show that its N-terminal part binds to the PX domain of p47phox and p40phox.  相似文献   

9.
The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.  相似文献   

10.
NADPH oxidase activation involves the assembly of membrane-localized cytochrome b559 with the cytosolic components p47phox, p67phox, and the small GTPase Rac. Assembly is mimicked by a cell-free system consisting of membranes and cytosolic components, activated by an anionic amphiphile. We reported that a chimeric construct, consisting of residues 1-212 of p67phox and full-length Rac1, activates the oxidase in vitro in an amphiphile-dependent manner, and when prenylated, in the absence of amphiphile and p47phox. We subjected chimera p67phox-(1-212)-Rac1 to mutational analysis and found that: 1) replacement of a single basic residue at the C terminus of the Rac1 moiety by glutamine is sufficient for loss of activity by the non-prenylated chimera; replacement of all six basic residues by glutamines is required for loss of activity by the prenylated chimera. 2) A V204A mutation in the activation domain of the p67phox moiety leads to a reduction in activity. 3) Mutating residues, known to participate in the interaction between free p67phox and Rac1, in the p67phox-(R102E) or Rac1 (A27K, G30S) moieties of the chimera, leads to a marked decrease in activity, indicating a requirement for intrachimeric bonds, in addition to the engineered fusion. 4) Chimeras, inactive because of mutations A27K or G30S in the Rac1 moiety, are reactivated by supplementation with exogenous Rac1-GTP but not with exogenous p67phox. This demonstrates that Rac has a dual role in the assembly of NADPH oxidase. One is to tether p67phox to the membrane; the other is to induce an "activating" conformational change in p67phox.  相似文献   

11.
The neutrophil NADPH oxidase produces superoxide anions in response to infection. This reaction is activated by association of cytosolic factors, p47phox and p67phox, and a small G protein Rac with the membranous flavocytochrome b558. Another cytosolic factor, p40phox, is associated to the complex and is reported to play regulatory roles. Initiation of the NADPH oxidase activation cascade has been reported as consecutive to phosphorylation on serines 359/370 and 379 of the p47phox C terminus. These serines surround a polyproline motif that can interact with the Src homology 3 (SH3) module of p40phox (SH3p40) or the C-terminal SH3 of p67phox (C-SH3p67). The latter one presents a higher affinity in the resting state for p47phox. A change in SH3 binding preference following phosphorylation has been postulated earlier. Here we report the crystal structures of SH3p40 alone or in complex with a 12-residue proline-rich region of p47phox at 1.46 angstrom resolution. Using intrinsic tryptophan fluorescence measurements, we compared the affinity of the strict polyproline motif and the whole C terminus peptide with both SH3p40 and C-SH3p67. These data reveal that SH3p40 can interact with a consensus polyproline motif but also with a noncanonical motif of the p47phox C terminus. The electrostatic surfaces of both SH3 are very different, and therefore the binding preference for C-SH3p67 can be attributed to the polyproline motif recognition and particularly to the Arg-368p47 binding mode. The noncanonical motif contributes equally to interaction with both SH3. The influence of serine phosphorylation on residues 359/370 and 379 on the affinity for both SH3 domains has been checked. We conclude that contrarily to previous suggestions, phosphorylation of Ser-359/370 does not modify the SH3 binding affinity for both SH3, whereas phosphorylation of Ser-379 has a destabilizing effect on both interactions. Other mechanisms than a phosphorylation induced switch between the two SH3 must therefore take place for NADPH oxidase activation cascade to start.  相似文献   

12.
N Alloul  Y Gorzalczany  M Itan  N Sigal  E Pick 《Biochemistry》2001,40(48):14557-14566
Activation of the superoxide (O2(-))-generating NADPH oxidase of phagocytes is the consequence of the assembly of a membrane-associated flavocytochrome b(559) with the cytosolic proteins p47(phox) and p67(phox) and the small GTPase Rac (1 or 2). We proposed that Rac1 serves as a membrane-targeting molecule for p67(phox). This hypothesis was tested by constructing recombinant chimeric proteins, joining various functional domains of p67(phox) and Rac1, and expressing these in Escherichia coli. Chimeras were assayed for the ability to support O2(-) production by phagocyte membranes in an amphiphile-activated cell-free system in the presence or absence of p47(phox). A chimera consisting of p67(phox) truncated at residue 212 and fused to a full-length Rac1 [p67(phox)(1-212)-Rac1(1-192)] was a potent NADPH oxidase activator. A p67(phox)(1-212)-Rac1(178-192) chimera, to which Rac1 contributed only the C-terminal polybasic domain, was a weaker but consistent activator. Chimeras comprising the full length of Rac1 bound GTP/GDP, like bona fide GTPases. The activity of p67(phox)-Rac1 chimeras was dependent on the presence of the tetratricopeptide repeat and activation domains, in the p67(phox) segment, and on an intact polybasic region, at the C terminus of the Rac1 segment, but not on the insert region of Rac1. Partial activation by chimeras, in the GTP-bound form, was also possible in the absence of p47(phox). Evidence is offered in support of the proposal that the GTP- and GDP-bound forms of chimera p67(phox)(1-212)-Rac1(1-192) have distinct conformations, corresponding to the presence and absence of intrachimeric bonds, respectively.  相似文献   

13.
Human normal and transformed (Caco-2) colon tissues as well as guinea pig gastric mucosal cells express Nox1, which is a homolog of the phagocyte NADPH oxidase subunit, gp91(phox) of membrane-bound cytochrome b(558). It was reported that Nox1-transfection to NIH 3T3 cells could provide O(2)(-)-generating ability, independently of regulatory cytosolic factors (Rac2, p67(phox), and p47(phox)) that are obligatory in the phagocyte oxidase system. Here, we detected and sequenced a p67(phox) homolog in Caco-2 almost identical to the neutrophil sequence, except for three nucleotide substitutions, two of which changed lysines 181 and 328 to arginines. Investigation of its ability to support O(2)(-)-generation in cell-free reconstitution experiments combining with neutrophil cytochrome b(558) showed O(2)(-)-generation, provided that recombinant p47(phox) was added. This result demonstrates that the intrinsic p67(phox) homolog of Caco-2 was able to function as a phagocyte p67(phox) for cytochrome b(558). The requirement of p47(phox) addition suggested that this component was absent in Caco-2 cells. Caco-2 membranes, used as a source of Nox1 in place of cytochrome b(558), did not show significant O(2)(-)-generation, which was mainly explained by their very little Nox1 expression.  相似文献   

14.
The superoxide-producing phagocyte NADPH oxidase can be reconstituted in a cell-free system. The activity of NADPH oxidase is dependent on FAD, but the physiological status of FAD in the oxidase is not fully elucidated. To clarify the role of FAD in NADPH oxidase, FAD-free full-length recombinant p47(phox), p67(phox), p40(phox), and Rac were prepared, and the activity was reconstituted with these proteins and purified cytochrome b(558) (cyt b(558)) with different amounts of FAD. A remarkably high activity, over 100 micromol/s/micromol heme, was obtained in the oxidase with purified cyt b(558), ternary complex (p47-p67-p40(phox)), and Rac. From titration with FAD of the activity of NADPH oxidase reconstituted with purified FAD-devoid cyt b, the dissociation constant K(d) of FAD in cyt b(558) of reconstituted oxidase was estimated as nearly 1 nm. We also examined addition of FAD on the assembly process in reconstituted oxidase. The activity was remarkably enhanced when FAD was present during assembly process, and the efficacy of incorporating FAD into the vacant FAD site in purified cyt b(558) increased, compared when FAD was added after assembly processes. The absorption spectra of reconstituted oxidase under anaerobiosis showed that incorporation of FAD into cyt b(558) recovered electron flow from NADPH to heme. From both K(d) values of FAD and the amount of incorporated FAD in cyt b(558) of reconstituted oxidase, in combination with spectra, we propose the model in which the K(d) values of FAD in cyt b(558) is changeable after activation and FAD binding works as a switch to regulate electron transfer in NADPH oxidase.  相似文献   

15.
An activation domain in p67(phox) (residues within 199-210) is essential for cytochrome b(558)-dependent activation of NADPH superoxide (O2(-.)) generation in a cell-free system (Han, C.-H., Freeman, J. L. R., Lee, T., Motalebi, S. A., and Lambeth, J. D. (1998) J. Biol. Chem. 273, 16663-16668). To determine the steady state reduction flavin in the presence of highly absorbing hemes, 8-nor-8-S-thioacetamido-FAD ("thioacetamido-FAD") was reconstituted into the flavocytochrome, and the fluorescence of its oxidized form was monitored. Thioacetamido-FAD-reconstituted cytochrome showed lower activity (7% versus 100%) and increased steady state flavin reduction (28 versus <5%) compared with the enzyme reconstituted with native FAD. Omission of p67(phox) decreased the percent steady state reduction of the flavin to 4%, but omission of p47(phox) had little effect. The activation domain on p67(phox) was critical for regulating flavin reduction, since mutations in this region that decreased O2(-.) generation also decreased the steady state reduction of flavin. Thus, the activation domain on p67(phox) regulates the reductive half-reaction for FAD. This reaction is comprised of the binding of NADPH followed by hydride transfer to the flavin. Kinetic deuterium isotope effects along with K(m) values permitted calculation of the K(d) for NADPH. (R)-NADPD but not (S)-NADPD showed kinetic deuterium isotope effects on V and V/K of about 1.9 and 1.5, respectively, demonstrating stereospecificity for the R hydride transfer. The calculated K(d) for NADPH was 40 microM in the presence of wild type p67(phox) and was approximately 55 microM using the weakly activating p67(phox)(V205A). Thus, the activation domain of p67(phox) regulates the reduction of FAD but has only a small effect on NADPH binding, consistent with a dominant effect on hydride/electron transfer from NADPH to FAD.  相似文献   

16.
Production of toxic oxygen metabolites provides a mechanism for microbicidal activity of the neutrophil. The NADPH oxidase enzyme system initiates the production of oxygen metabolites by reducing oxygen to form superoxide anion (O(2)()). With stimulation of the respiratory burst, cytosolic oxidase components, p47(phox), p67(phox), and Rac, translocate to the phagolysomal and plasma membranes where they form a complex with cytochrome b(558) and express enzyme activity. A 29-kDa neutrophil protein (p29) was identified by co-immunoprecipitation with p67(phox). N-terminal sequence analysis of p29 revealed homology to an open reading frame gene described in a myeloid leukemia cell line. A cDNA for p29 identical to the open reading frame protein was amplified from RNA of neutrophils. Significant interaction between p29 and p67(phox) was demonstrated using a yeast two-hybrid system. A recombinant (rh) p29 was expressed in Sf9 cells resulting in a protein with an apparent molecular weight of 34,000. The rh-p29 showed immunoreactivity with the original rabbit antiserum that detected p47(phox) and p67(phox). In addition, rh-p29 exhibited PLA(2) activity, which was Ca(2+) independent, optimal at low pH, and preferential for phosphatidylcholine substrates. The recombinant protein protected glutathione synthetase and directly inactivated H(2)O(2). By activity and sequence homology, rh-p29 can be classified as a peroxiredoxin. Finally, O(2)() production by plasma membrane and recombinant cytosolic oxidase components in the SDS-activated, cell-free NADPH oxidase system were enhanced by rh-p29. This effect was not inhibited by PLA(2) inhibitors. Thus, p29 is a novel protein that associates with p67 and has peroxiredoxin activity. This protein has a potential role in protecting the NADPH oxidase by inactivating H(2)O(2) or altering signaling pathways affected by H(2)O(2).  相似文献   

17.
The heterodimeric flavocytochrome b558, comprised of the two integral membrane proteins p22phox and gp91phox, mediates the transfer of electrons from NADPH to molecular oxygen in the phagocyte NADPH oxidase to generate the superoxide precursor of microbicidal oxidants. This study uses deletion mutagenesis to identify regions of p22phox required for maturation of gp91phox and for NADPH oxidase activity. N-terminal, C-terminal, or internal deletions of human p22phox were generated and expressed in Chinese hamster ovary cells with transgenes for gp91phox and two other NADPH oxidase subunits, p47phox, and p67phox. The results demonstrate that p22phox-dependent maturation of gp91phox carbohydrate, cell surface expression of gp91phox, and the enzymatic function of flavocytochrome b558 are closely correlated. Whereas the 5 N-terminal and 25 C-terminal amino acids are dispensable for these functions, the N-terminal 11 amino acids of p22phox are required, as is a hydrophilic region between amino acids 65 and 90. Upon deletion of 54 residues at the C terminus of p22phox (amino acids 142-195), maturation and cell surface expression of gp91phox was still preserved, although NADPH oxidase activity was absent, as expected, due to removal of a proline-rich domain between amino acids 151-160 that is required for recruitment of p47phox. Antibody binding studies indicate that the extreme N terminus of p22phox is inaccessible in the absence of cell permeabilization, supporting a model in which both the N- and C-terminal domains of p22phox extend into the cytoplasm, anchored by two membrane-embedded regions.  相似文献   

18.
A cDNA encoding rat p47phox was cloned from rat spleen cDNA library, utilizing rapid amplification of cDNA ends. The open reading frame corresponded to 389 amino acids: It contained the phagocyte oxidase homology domain, two Src homology 3 domains and a proline rich region, all of which are conserved in mammalian p47phox sequences. Rat p47phox displayed the highest degree of identity to mouse p47phox (94%). We expressed and purified rat p47phox as a glutathione S-transferase fusion protein, and found that the rat protein could replace human p47phox in a cell-free activation system for human NADPH oxidase, giving about half activity. Although rat 12-lipoxygenase interacted with human p47phox in a yeast two-hybrid system, this was not the case for rat p47phox.  相似文献   

19.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

20.
The superoxide-generating NADPH oxidase is converted to an active state by the assembly of a membrane-localized cytochrome b(559) with three cytosolic components: p47(phox), p67(phox), and GTPase Rac1 or Rac2. Assembly involves two sets of protein-protein interactions: among cytosolic components and among cytosolic components and cytochrome b(559) within its lipid habitat. We circumvented the need for interactions among cytosolic components by constructing a recombinant tripartite chimera (trimera) consisting of the Phox homology (PX) and Src homology 3 (SH3) domains of p47(phox), the tetratricopeptide repeat and activation domains of p67(phox), and full-length Rac1. Upon addition to phagocyte membrane, the trimera was capable of oxidase activation in vitro in the presence of an anionic amphiphile. The trimera had a higher affinity (lower EC(50)) for and formed a more stable complex (longer half-life) with cytochrome b(559) compared with the combined individual components, full-length or truncated. Supplementation of membrane with anionic but not neutral phospholipids made activation by the trimera amphiphile-independent. Mutagenesis, truncations, and domain replacements revealed that oxidase activation by the trimera was dependent on the following interactions: 1) interaction with anionic membrane phospholipids via the poly-basic stretch at the C terminus of the Rac1 segment; 2) interaction with p22(phox) via Trp(193) in the N-terminal SH3 domain of the p47(phox) segment, supplementing the electrostatic attraction; and 3) an intrachimeric bond among the p67(phox) and Rac1 segments complementary to their physical fusion. The PX domain of the p47(phox) segment and the insert domain of the Rac1 segment made only minor contributions to oxidase assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号