首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen peroxide (H2O2) could induce oxidative damage at long distance from its generation site and it is also an important signalling molecule that induces some genes related to oxidative stress. Our objective was to study the plasma and blood cells capability to detoxify H2O2 after intense exercise and its correlation with oxidative damage. Blood samples were taken from nine professional cycling, participating in a mountain stage, under basal conditions and 3 h after the competition. Catalase and glutathione peroxidase activities decreased (40 and 50% respectively) in neutrophils after the cycling stage, while glutathione peroxidase increased (87%) in lymphocytes. Catalase protein levels and catalase specific activity maintained basal values after the stage in plasma. Catalase protein levels decreased (48%) in neutrophils and its specific activity increased up to plasma values after exercise. Myeloperoxidase (MPO) increased (39%) in neutrophils after the cycling stage. Exercise-induced hemolysis and lymphopenia inversely correlated with cellular markers of oxidative stress. Plasma malondialdehyde (MDA) directly correlated with neutrophil MPO activity and erythrocytes MDA. Intense exercise induces oxidative damage in blood cells as erythrocytes and lymphocytes, but not in neutrophils.  相似文献   

2.
Hydrogen peroxide (H2O2) could induce oxidative damage at long distance from its generation site and it is also an important signalling molecule that induces some genes related to oxidative stress. Our objective was to study the plasma and blood cells capability to detoxify H2O2 after intense exercise and its correlation with oxidative damage. Blood samples were taken from nine professional cycling, participating in a mountain stage, under basal conditions and 3 h after the competition. Catalase and glutathione peroxidase activities decreased (40 and 50% respectively) in neutrophils after the cycling stage, while glutathione peroxidase increased (87%) in lymphocytes. Catalase protein levels and catalase specific activity maintained basal values after the stage in plasma. Catalase protein levels decreased (48%) in neutrophils and its specific activity increased up to plasma values after exercise. Myeloperoxidase (MPO) increased (39%) in neutrophils after the cycling stage. Exercise-induced hemolysis and lymphopenia inversely correlated with cellular markers of oxidative stress. Plasma malondialdehyde (MDA) directly correlated with neutrophil MPO activity and erythrocytes MDA. Intense exercise induces oxidative damage in blood cells as erythrocytes and lymphocytes, but not in neutrophils.  相似文献   

3.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

4.
5.
Metformin (1-(diaminomethylidene)-3,3-dimethyl-guanidine), which is the most commonly prescribed oral antihyperglycaemic drug in the world, was reported to have several antioxidant properties such as the inhibition of advanced glycation end-products. In addition to its use in the treatment of diabetes, it has been suggested that metformin may be a promising anti-aging agent. The present work was aimed at assessing the possible protective effects of metformin against DNA-damage induction by oxidative stress in vitro. The effects of metformin were compared with those of N-acetylcysteine (NAC). For this purpose, peripheral blood lymphocytes from aged (n = 10) and young (n = 10) individuals were pre-incubated with various concentrations of metformin (10–50 μM), followed by incubation with 15 μM cumene hydroperoxide (CumOOH) for 48 h, under conditions of low oxidant level, which do not induce cell death. Protection against oxidative DNA damage was evaluated by use of the Comet assay and the cytokinesis-block micronucleus technique. Changes in the levels of malondialdehyde + 4-hydroxy-alkenals, an index of oxidative stress, were also measured in lymphocytes. At concentrations ranging from 10 μM to 50 μM, metformin did not protect the lymphocytes from DNA damage, while 50 μM NAC possessed an effective protective effect against CumOOH-induced DNA damage. Furthermore, NAC, but not metformin, inhibited DNA fragmentation induced by CumOOH. In contrast to the lack of protection against oxidative damage in lymphocyte cultures, metformin significantly protected the cells from lipid peroxidation in both age groups, although not as effective as NAC in preventing the peroxidative damage at the highest doses. Within the limitations of this study, the results indicate that pharmacological concentrations of metformin are unable to protect against DNA damage induced by a pro-oxidant stimulus in cultured human lymphocytes, despite its antioxidant properties.  相似文献   

6.
7.
The ubiquitin/proteasome pathway plays an essential role in protein turnover in vivo, and contributes to removal of oxidatively damaged proteins. We examined the effects of proteasome inhibition on viability, oxidative damage and antioxidant defences in NT-2 and SK-N-MC cell lines. The selective proteasome inhibitor, lactacystin (1 microM) caused little loss of viability, but led to significant increases in levels of oxidative protein damage (measured as protein carbonyls), ubiquitinated proteins, lipid peroxidation and 3-nitrotyrosine, a biomarker of the attack of reactive nitrogen species (such as peroxynitrite, ONOO(-)) upon proteins. Higher levels (25 microM) of lactacystin did not further increase the levels of carbonyls, lipid peroxidation, 3-nitrotyrosine, or ubiquitinated proteins, but produced increases in the levels of 8-hydroxyguanine (a biomarker of oxidative DNA damage) and falls in levels of GSH. Lactacystin (25 microM) caused loss of viability, apparently by apoptosis, and also increased production of nitric oxide (NO.) (measured as levels of NO2- plus NO3-) by the cells; this was inhibited by N-nitro-L-arginine methyl ester (L-NAME), which also decreased cell death induced by 25 microM lactacystin and decreased levels of 3-nitrotyrosine. The NO. production appeared to involve nNOS; iNOS or eNOS were not detectable in either cell type. Another proteasome inhibitor, epoxomicin, had similar effects.  相似文献   

8.
The aim of this study was to determine the modulatory effect of Lycium barbarum polysaccharides (LBP) on the oxidative stress induced by an exhaustive exercise. 32 male Wistar rats were taken in the study. The experiment was a 30-day exhaustive exercise program. We determined the lipid peroxidation, glycogen levels, and anti-oxidant enzyme activities in skeletal muscle. The results demonstrated that L. barbarum polysaccharides administration significantly increases glycogen level and anti-oxidant enzyme activities, and decreased malondialdehyde (MDA) level and creatine kinase activities. In conclusion, L. barbarum polysaccharides administration can significantly decrease the oxidative stress induced by the exhaustive exercise.  相似文献   

9.
Fluoride is a common pollutant which occurs in various environmental matrices considered as one of the most phytotoxic pollutants. It is essential to the living organisms in trace quantities but at its higher concentration it becomes poisonous. Excess amount of fluoride in environment not only exerts its toxic effects on human beings and animals but also on plants. Toxicological impacts of fluoride on plants have been largely debated due to reduction of growth parameters, inhibition of metabolic activities and decreased photosynthetic activity. The signs of fluoride impacts on plants may be severe, acute or chronic and toxicity of fluoride depends on dose, frequency of exposure, duration and genotype of plant. This article overviews understanding of transport, uptake and fluoride accumulation in plants and provide insights into the fluoride-induced oxidative stress and regulatory mechanisms to cope up with it. The main objective of this article is to prospect new research avenues to unravel the mechanisms explaining fluoride toxicity in various plant species.  相似文献   

10.
11.
Although the cause of amyotrophic lateral sclerosis (ALS) is unknown, substantial evidence indicates that oxidative toxicity is associated with neuronal death in this disease. We examined levels of a well-established marker of oxidative damage to DNA, 8-hydroxy-2'-deoxyguanosine (8OH2'dG) in plasma, urine, and cerebrospinal fluid (CSF) at a single time point from subjects with ALS, other neurological diseases, or no known disorders. We also measured the rate of change of 8OH2'dG levels in plasma and urine from ALS and in urine from control subjects over 9 months and examined the relationship to disease severity. In each fluid, 8OH2'dG levels were significantly elevated in the ALS group as compared to control subjects. In all subjects, the plasma and CSF 8OH2'dG levels increased with age, providing further evidence for a role of oxidative damage in normal aging. Plasma and urine 8OH2'dG levels increased significantly with time in the ALS group only. The rate of increase in urine 8OH2'dG levels with time was significantly correlated with disease severity. These findings are consistent with the hypothesis that oxidative pathology accompanies the neurodegenerative process in ALS and suggest that 8OH2'dG may provide a useful tool for monitoring therapeutic interventions in this disease.  相似文献   

12.
This study examined whether performing repeated bouts of eccentric exercise 2 and 4 days after an initial damaging bout would exacerbate muscle damage. One arm performed 3 sets of 10 eccentric actions of the elbow flexors (ECC1) using a dumbbell set at 50% of the maximal isometric force at 90 degrees (SINGLE). Two weeks later the same exercise was performed by the opposite arm with the exception that subsequent bouts were performed 2 (ECC2) and 4 (ECC3) days after ECC1 (REPEATED). In the REPEATED condition, maximal isometric force (MIF) decreased to the same level immediately after ECC1-3, and the decreases in range of motion (ROM) and increases in upper arm circumference immediately postexercise were similar among the bouts. However, no significant differences in changes in MIF, ROM, muscle soreness, and plasma creatine kinase activity were evident between the SINGLE and REPEATED conditions when excluding the changes immediately after ECC2 and ECC3. These results suggest that ECC2 and ECC3 did not exacerbate muscle damage or affect the recovery process.  相似文献   

13.
Invasive species cause deep impacts on ecosystems worldwide, contributing to the decline and extinction of indigenous species. Effective defences against native biological threats in indigenous species, whether structural or inducible, often seem inoperative against invasive species. Here, we show that tadpoles of the Iberian green frog detect chemical cues from indigenous predators (dragonfly nymphs) and respond by reducing their activity and developing an efficient defensive morphology against them (increased tail depth and pigmentation). Those defensive responses, however, were not activated against a highly damaging invasive predator (red swamp crayfish). Induced defences increased tadpole survival when faced against either indigenous dragonflies or invasive crayfish, so its inactivation in the presence of the invasive predator seems to be due to failure in cue recognition. Furthermore, we tested for local adaptation to the invasive predator by comparing individuals from ponds either exposed to or free from crayfish. In both cases, tadpoles failed to express inducible defences against crayfish, indicating that ca 30 years of contact with the invasive species (roughly 10-15 frog generations) have been insufficient for the evolution of recognition of invasive predator cues.  相似文献   

14.
15.
Limits to exhaustive exercise in fish   总被引:7,自引:0,他引:7  
Exercise to exhaustion leads to severe metabolic, acid-base and ionic changes in fish. It has been shown that several abiotic and biotic factors can limit burst exercise performance and the recovery process in fish. This article reviews the importance of body size, temperature, fasting/starvation and training on the ability of fish to perform and recover from exhaustive exercise. It is concluded that the constraints placed on a fish prior to and following exercise reflects the large intra-specific variability in the physiological response to exercise in fish.  相似文献   

16.
Glutathione (gamma-glutamylcysteinylglycine) is one of the major antioxidants in the body. The present study investigated the changes of glutathione status, oxidative injury, and antioxidant enzyme systems after an exhaustive bout of treadmill running and/or hydroperoxide injection in male Sprague-Dawley rats. Concentrations of total and reduced glutathione in deep vastus lateralis muscle were significantly increased (P less than 0.01) after exhaustive exercise with either hydroperoxide (t-butyl hydroperoxide) or saline injection, whereas hydroperoxide alone had no significant effect. Exhaustive exercise increased muscle glutathione disulfide content by 75 and 60% (P less than 0.05), respectively, in hydroperoxide and saline groups. Concentrations of glutathione-related amino acids glutamate, cysteine, and aspartate were significantly increased in the same muscle after exhaustion. Hepatic glutathione status was not affected by either hydroperoxide injection or exercise. Glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities were significantly elevated after exhaustive exercise with or without hydroperoxide injection in muscle but not in liver. Hydroperoxide and exhaustive exercise enhanced lipid peroxidation in muscle and liver, respectively. It is concluded that exhaustive exercise can impose a severe oxidative stress on skeletal muscle and that glutathione systems as well as antioxidant enzymes are important in coping with free radical-mediated muscle injury.  相似文献   

17.
Fathead minnows Pimephales promelas maintained at 25° C for 6 h had significantly higher superoxide dismutase (SOD) activity than fish maintained at 7 or 32° C, but hypoxic conditions (3 mg l?1 O2) over the same time period did not affect SOD activity. Fish in better body condition (length‐adjusted mass) had higher SOD activity. In a separate experiment, P. promelas maintained at three water temperatures (7, 23 and 32° C) for 31 days did not differ in liver acrolein, a biomarker of oxidative stress.  相似文献   

18.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   

19.
The aim of the present study was to investigate whether fish oil supplementation was able to modulate the acute-phase response to strenuous exercise. Twenty male runners were randomized to receive supplementation (n = 10) with 6.0 g fish oil daily, containing 3.6 g n-3 polyunsaturated fatty acids (PUFA), for 6 wk or to receive no supplementation (n = 10) before participating in The Copenhagen Marathon 1998. Blood samples were collected before the race, immediately after, and 1.5 and 3 h postexercise. The fatty acid composition in blood mononuclear cells (BMNC) differed between the fish oil-supplemented and the control group, showing incorporation of n-3 PUFA and less arachidonic acid in BMNC in the supplemented group. The plasma levels of tumor necrosis factor-alpha, interleukin-6, and transforming growth factor-beta(1) peaked immediately after the run, the increase being 3-, 92-, and 1.1-fold, respectively, compared with resting samples. The level of interleukin-1 receptor antagonist peaked 1.5 h after exercise, with the increase being 87-fold. However, the cytokine levels did not differ among the two groups. Furthermore, supplementation with fish oil did not influence exercise-induced increases in leucocytes and creatine kinase. In conclusion, 6 wk of fish oil supplementation had no influence on the acute-phase response to strenuous exercise.  相似文献   

20.
Early Ca2+ signaling events in cells of the immune system after exhaustive exercise challenge (8% slope, 32 m/min(-1) speed) of female C57BL/6 mice, and their effects on oxidative reactions in thymus were studied. Intracellular Ca2+ and the oscillation of free extracellular Ca2+ were imaged with cell permeant cell and cell impermeant Fluo 3 calcium indicator in thymocytes. The role of estradiol was assessed by RIA for levels of membrane bound estradiol. Oxidative product release and membrane lipid peroxide were also evaluated. Intracellular Ca2+ levels were significantly higher in thymocytes of exercised compared with control mice (p < .001). There was a continuous flux of Ca2+ after exercise when cells were monitored in Ca2+ rich medium, with a significant influx between 160 and 200 sec (p < .001). Membrane bound estradiol was elevated in thymocytes of exercised compared to control mice (p < .05). Immediately after exercise there was a greater release of oxidative products by thymocytes in exhaustively exercised compared with control animals. There was also significant generation of lipid peroxide in thymus of exercised mice (p < .001). The findings suggest that exhaustive exercise may stimulate estradiol uptake by receptors on thymocytes, with a possible opening up of estradiol-receptor operated channels for Ca2+ entry into cells. This may have damaging effects on thymic lymphocytes by the triggering of oxidative reactions as determined by higher oxidative product release and greater generation of lipid peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号