首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA replication was examined in mutants for seven different Saccharomyces cerevisiae genes which are essential for nuclear DNA replication. In cdc8 and cdc21, mutants defective in continued replication during the S phase of the cell cycle, mitochondrial DNA replication ceases at the nonpermissive temperature. Replication is temperature sensitive even when these mutants are arrested in the G1 phase of the cell cycle with α factor, a condition where mitochondrial DNA replication continues for the equivalent of several generations at the permissive temperature. Therefore the cessation of replication results from a defect in mitochondrial replication per se, rather than from an indirect consequence of cells being blocked in a phase of the cell cycle where mitochondrial DNA is not normally synthesized. Since the temperature-sensitive mutations are recessive, the products of genes cdc8 and cdc21 must be required for both nuclear and mitochondrial DNA replication. In contrast to cdc8 and cdc21, mitochondrial DNA replication continues for a long time at the nonpermissive temperature in five other cell division cycle mutants in which nuclear DNA synthesis ceases within one cell cycle: cdc4, cdc7, and cdc28, which are defective in the initiation of nuclear DNA synthesis, and cdc14 and cdc23, which are defective in nuclear division. The products of these genes, therefore, are apparently not required for the initiation of mitochondrial DNA replication.  相似文献   

2.
An experimental rationale for deciphering the relative dependence of steps in a developmental pathway (Jarvik & Botstein, 1973; Hereford & Hartwell, 1974) has been employed to determine the relationship between the hydroxyurea-sensitive step and various temperature-sensitive steps in the cell cycle of Saccharomyces cerevisiae. Since hydroxyurea inhibits DNA replication in yeast (Slater, 1973), the data identify gene products upon whose function DNA replication is dependent (cdc 4, 6, 7, 2, 8, 21) and gene products whose function or synthesis requires DNA replication (cdc 2, 8, 21, 9, 13, 16, 23, 5, 15). Other gene products (cdc 3, 11, 24) function independent of DNA replication. These results suggest that the events of the cell cycle occur in a proscribed order because many of the gene products that mediate these events arc restricted to a prescribed sequence of function.Mutations in two genes (cdc 2 and 6) result in cells that remain sensitive to hydroxyurea after an incubation at the restrictive temperature, despite the fact that both mutants incorporate radioactive precursors into DNA at the restrictive temperature (Hartwell, 1973). It is suggested that cdc 6 specifies a function that is necessary for the proper initiation of DNA replication, and cdc 2 a function that is necessary for correct DNA elongation, and that in the absence of either of these functions the DNA that is made is either faulty or incomplete.  相似文献   

3.
The DNA ligase activities of wild type and temperature-sensitive lethal cdc 17 mutants of Schizosaccharomyces pombe have been studied by measuring effects on the conversion of relaxed DNA circles containing a single nick to a closed circular form. Such assays have revealed that all cdc 17 mutants have a thermosensitive DNA ligase deficiency, that this deficiency cosegregates 2:2 with their temperature-sensitive cdc-lethality in three tetrads derived from a cross against wild type, and that genetic reversion of the temperature-sensitive cdc? phenotype is accompanied by a restoration of DNA ligase activity; all of which implies that the temperature-sensitive cdc? phenotype of cdc 17 mutants is due to a single nuclear mutation causing a DNA ligase deficiency. Both wild type and mutant enzymes have been partially purified by chromatography in heparin/agarose columns. The wild-type enzyme is completely stable in vitro at both permissive (25 °C) and restrictive (35 °C) temperatures, whereas that of two different mutants, though completely stable at 25 °C, is rapidly inactivated at 35 °C, implying that their mutations are located in the structural gene for DNA ligase.  相似文献   

4.
Individual phospholipids were assayed in exponentially growing and G1-arrested temperature-sensitive cell division cycle (cdc) mutants of Saccharomyces cerevisiae. It was observed that cdc28 cells which are known to arrest at ‘start’ when shifted to their non-permissive temperature, resulted in a 40% decrease in phosphatidylinositol (PI) level while the phosphatidylserine (PS) content was doubled in these cells. The reduced level of PI was restored in cdc4 and cdc7 mutants which are known to arrest past the ‘start’. The increase in PS level in cdc8 mutant which was probably to compensate the intrinsic charging of membrane environment, was also reduced in cdc4 and cdc7 mutants. Our results demonstrate that PI may play a role in yeast cell division and growth that the abnormalities of cdc28 could also be related to PI decrease.  相似文献   

5.
Temperature-sensitive mutations in one gene (cdc1) of Saccharomyces cerevisiae confer a defect in bud emergence. Asynchronous cultures of cells defective in cdc1 collect uniformly as unbudded cells (or cells with very tiny buds) following a shift from the permissive to the restrictive temperature. Studies with synchronous cultures demonstrate that the thermolabile product of cdc1 completes its function (the execution point) for bud emergence at the time of bud emergence (0.2 fractions of a cell cycle). When this function is not completed at the restrictive temperature. cells complete DNA replication but do not undergo nuclear division.  相似文献   

6.
We isolated 18 independent recessive cold-sensitive cell-division-cycle (cdc) mutants of Saccharomyces cerevisiae, in nine complementation groups. Terminal phenotypes exhibited include medial nuclear division, cytokinesis, and a previously undescribed terminal phenotype consisting of cells with a single small bud and an undivided nucleus. Four of the cold-sensitive mutants proved to be alleles of CDC11, while the remaining mutants defined at least six new cell-division-cycle genes: CDC44, CDC45, CDC48, CDC49, CDC50 and CDC51.—Spontaneous revertants from cold-sensitivity of four of the medial nuclear division cs cdc mutants were screened for simultaneous acquisition of a temperature-sensitive phenotype. The temperature-sensitive revertants of four different cs cdc mutants carried single new mutations, called Sup/Ts to denote their dual phenotype: suppression of the cold-sensitivity and concomitant conditional lethality at 37°. Many of the Sup/Ts mutations exhibited a cell-division-cycle terminal phenotype at the high temperature, and they defined two new cdc genes (CDC46 and CDC47). Two cold-sensitive medial nuclear division cdc mutants representing two different cdc genes were suppressed by different Sup/Ts alleles of another gene which also bears a medial nuclear division function (CDC46). In addition, the cold-sensitive medial nuclear division cdc mutant csH80 was suppressed by a Sup/Ts mutation yielding an unbudded terminal phenotype with an undivided nucleus at the high temperature. This mutation was an allele of CDC32. These results suggest a pattern of interaction among cdc gene products and indicate that cdc gene proteins might act in the cell cycle as complex specific functional assemblies.  相似文献   

7.
The Role of S. CEREVISIAE Cell Division Cycle Genes in Nuclear Fusion   总被引:28,自引:4,他引:24       下载免费PDF全文
Forty temperature-sensitive cell division cycle (cdc) mutants of Saccharomyces cerevisiae were examined for their ability to complete nuclear fusion during conjugation in crosses to a CDC parent strain at the restrictive temperature. Most of the cdc mutant alleles behaved as the CDC parent strain from which they were derived, in that zygotes produced predominantly diploid progeny with only a small fraction of zygotes giving rise to haploid progeny (cytoductants) that signalled a failure in nuclear fusion. However, cdc4 mutants exhibited a strong nuclear fusion (karyogamy) defect in crosses to a CDC parent and cdc28, cdc34 and cdc37 mutants exhibited a weak karyogamy defect. For all four mutants, the karyogamy defect and the cell cycle defect cosegregated, suggesting that both defects resulted from a single lesion for each of these cdc mutants. Therefore, the cdc 4, 28, 34 and 37 gene products are required in both cell division and karyogamy.  相似文献   

8.
9.
The meiotic effects of several cell division cycle (cdc) mutations of Saccharomyces cerevisiae have been investigated by electron microscopy and by genetic and biochemical methods. Diploid strains homozygous for cdc mutations known to confer defects on vegetative DNA synthesis were subjected to restrictive conditions during meiosis. Electron microscopy revealed that all four mutants were conditionally arrested in meiosis after duplication of the spindle pole bodies but before spindle formation for the first meiotic division. None of these mutants became committed to recombination or contained synaptonemal complex at the meiotic arrest. — The mutants differed in their ability to undergo premeiotic DNA synthesis under restrictive conditions. Both cdc8 and cdc21, which are defective in the propagation of vegetative DNA synthesis, also failed to undergo premeiotic DNA synthesis. The arrest of these mutants at the stage before meiosis I spindle formation could be attributed to the failure of DNA synthesis because inhibition of synthesis by hydroxyurea also caused arrest at this stage. — Premeiotic DNA synthesis occurred before the arrest of cdc7, which is defective in the initiation of vegetative DNA synthesis, and of cdc2, which synthesizes vegetative DNA but does so defectively. The meiotic arrest of cdc7 homozygotes was partially reversible. Even if further semiconservative DNA replication was inhibited by the addition of hydroxyurea, released cells rapidly underwent commitment to recombination and formation of synaptonemal complexes. The cdc7 homozygote is therefore reversibly arrested in meiosis after DNA replication, whereas vegetative cultures have previously been shown to be defective only in the initiation of DNA synthesis.  相似文献   

10.
cdc 19.1 is a temperature-sensitive lesion in the genome of Saccharomyces cerevisiae. The phenotype of this mutant is a cell cycle specific arrest in G1, which is expressed at 37°C. In the present study, 31P- and 13C-NMR spectroscopy were used to analyze the metabolism of the mutant at the permissive and restrictive temperatures. Our results confirm previous findings which have indicated that cdc 19.1 contains temperature-sensitive pyruvate kinase activity. In contrast to previous findings, however, the present investigation demonstrates that restriction of pyruvate kinase activity in vivo takes as long as 24 h to be fully expressed. In addition, analysis by NMR has allowed us to assess the metabolic consequences of pyruvate kinase restriction which may contribute to the arrest of cell growth in the early G1 phase of the cell division cycle.  相似文献   

11.
The replication of the 2 μm DNA of Saccharomyces cerevisiae has been examined in cell division cycle (cdc) mutants. The 2 μm DNA does not replicate at the restrictive temperature in cells bearing the cdc28, cdc4, and cdc7 mutations which prevent passage of cells from the G1 phase into S phase. Plasmid replication also is prevented in a mating-type cells by α factor, a mating hormone which prevents cells from completing an event early in G1 phase. The 2 μm DNA ceases replication at 36 °C in a mutant harboring the cdc8 mutation, a defect in the elongation reactions of nuclear DNA replication. Plasmid replication continues at the restrictive temperature for approximately one generation in a cdc13 mutant defective in nuclear division. These results show that 2 μm DNA replication is controlled by the same genes that control the initiation and completion of nuclear DNA replication.  相似文献   

12.
Summary The protein serine-threonine kinase p34 cdc2+ plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. p34 cdc2+ function is required both for the initiation of DNA replication and for entry into mitosis, and is also required for the initiation of the second meiotic nuclear division. Recent extensive analysis of p34 cdc2+ homologue proteins in higher eukaryotes has demonstrated that p34 cdc2+ function is likely to be conserved in all eukaryotic cells. Here we report the isolation and characterisation of five new temperature-sensitive alleles of the cdc 2+ gene. All five have been cloned and sequenced, together with the meiotically defective cdc2-N22 allele, bringing the total of p34 cdc2+ mutants cloned in this and previous reports to seventeen. The five temperature-sensitive alleles define four separate mutations within the p34 cdc2+ protein sequence, two of which give rise to cell cycle arrest in G2 only, when shifted to the restrictive temperature. The nature of the mutation in each protein is described and possible implications for the structure and function of p34 cdc2+ discussed.  相似文献   

13.
Steven I. Reed 《Genetics》1980,95(3):561-577
Thirty-three temperature-sensitive mutations defective in the start event of the cell division cycle of Saccharomyces cerevisiae were isolated and subjected to preliminary characterization. Complementation studies assigned these mutations to four complementation groups, one of which, cdc28, has been described previously. Genetic analysis revealed that these complementation groups define single nuclear genes, unlinked to one another. One of the three newly identified genes, cdc37, has been located in the yeast linkage map on chromosome IV, two meiotic map units distal to hom2.—Each mutation produces stage-specific arrest of cell division at start, the same point where mating pheromone interrupts division. After synchronization at start by incubation at the restrictive temperature, the mutants retain the capacity to enlarge and to conjugate.  相似文献   

14.
In the budding yeast Saccharomyces cerevisiae, the DNA damage-induced G2 arrest requires the checkpoint control genes RAD9, RAD17, RAD24, MEC1, MEC2 and MEC3. These genes also prevent entry into mitosis of a temperature-sensitive mutant, cdc13, that accumulates chromosome damage at 37°?C. Here we show that a cdc13 mutant overexpressing Cdc20, a β-transducin homologue, no longer arrests in G2 at the restrictive temperature but instead undergoes nuclear division, exits mitosis and enters a subsequent division cycle, which suggests that the DNA damage-induced G2/M checkpoint control is not functional in these cells. This is consistent with our observation that overexpression of CDC20 in wild-type cells results in increased sensitivity to UV irradiation. Overproduction of Cdc20 does not influence the arrest phenotype of the cdc mutants whose cell cycle block is independent of RAD9-mediated checkpoint control. Therefore, we suggest that the DNA damage-induced checkpoint controls prevent mitosis by inhibiting the nuclear division pathway requiring CDC20 function.  相似文献   

15.
Control of the initiation of meiosis in yeast was examined in diploids homozygous for one of four different temperature-sensitive mutations that affect “start” of the mitotic cell cycle. Two of the mutations, cdc28 and tra3, bring about deficiencies in the initiation of meiosis, while cdc25 and cdc35 do not prevent initiation of normal meiosis at both permissive and restrictive temperatures. Moreover, diploids homozygous for the latter two mutations are capable of initiating meiosis in rich growth media upon transfer to the high, non-permissive temperature. This unique feature contrasts with the behavior of other yeast strains which require a starvation sporulation medium for initiation of meiosis. It is suggested that the initiation of meiosis includes functions that are shared with “start” of the mitotic cell cycle, as well as functions related to the choice between the two processes. Meiosis in vegetative media at the restrictive temperature (in cdc25 or cdc35 homozygotes) may be important for the study of chemical and physiological phenomena resulting from the meiotic process and not from adaptation to the sporulation medium.  相似文献   

16.
Ethanol-hypersensitive strains (ets mutants), unable to grow on media containing 6% ethanol, were isolated from a sample of mutagenized Schizosaccharomyces pombe wild-type cells. Genetic analysis of these ets strains demonstrated that the ets phenotype is associated with mutations in a large set of genes, including cell division cycle (cdc) genes, largely non-overlapping with the set represented by the temperature conditional method; accordingly, we isolated some ets non-ts cdc ? mutants, which may identify novel essential genes required for regulation of the S. pombe cell cycle. Conversely, seven well characterized ts cdc ? mutants were tested for their ethanol sensitivity; among them, cdc1–7 and cdc13–117 exhibited a tight ets phenotype. Ethanol sensitivity was also tested in strains bearing different alleles of the cdc2 gene, and we found that some of them were ets, but others were non-ets; thus, ethanol hypersensitivity is an allele-specific phenotype. Based on the single base changes found in each particular allele of the cdc2 gene, it is shown that a single amino acid substitution in the p34cdc2 gene product can produce this ets phenotype, and that ethanol hypersensitivity is probably due to the influence of this alcohol on the secondary and/or tertiary structure of the target protein. Ethanol-dependent (etd) mutants were also identified as mutants that can only be propagated on ethanol-containing media. This novel type of conditional phenotype also covers many unrelated genes. One of these etd mutants, etd1-1, was further characterized because of the lethal cdc ? phenotype of the mutant cells under restrictive conditions (absence of ethanol). The isolation of extragenic suppressors of etd1-1, and the complementation cloning of a DNA fragment encompassing the etd1 + wild-type gene (or an extragenic multicopy suppressor) demonstrate that current genetic techniques may be applied to mutants isolated by using ethanol as a selective agent.  相似文献   

17.
Bacteriophage X174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome.  相似文献   

18.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

19.
Temperature-sensitive mutations occurring in two unlinked complementation groups, cdc4 and cdc8, are recessive and result in a defect in DNA replication at the restrictive temperature. Results obtained with synchronous cultures suggest that cdc4 functions in the initiation of DNA replication and cdc8 functions in the propagation of DNA replication.  相似文献   

20.
Summary Seven temperature-sensitive mutants have been isolated in Saccharomyces cerevisiae which show a reproducible defect in DNA synthesis at the restrictive temperature. One of these is allelic with rnal1 (Hartwell et al., 1970) but the remaining mutants define six complementation groups and probably represent six different genes. The gene symbol dds (for depressed DNA synthesis) is proposed.At the restrictive temperature, rnal1-2, dds2-1 and dds6-1 show a rapid and almost total cessation of DNA and RNA synthesis, whilst protein synthesis continues for several hours. The remaining dds mutants show a reduced rate of DNA synthesis from the time of temperature shift (dds1, dds3, dds4) or a cessation of DNA synthesis at a later time (dds5). In some cases, RNA synthesis is affected concomitantly with, or soon after, the depression in DNA synthesis. Possible reasons for the phenotypes of these mutants, and for the relative absence of yeast mutants which are unambiguously and specifically affected in DNA synthesis, are discussed.In addition, we report the isolation of seven new alleles of known cdc genes and ten new mutants with a cell cycle phenotype that complement those already known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号